Deletion of CDKAL1 affects mitochondrial ATP generation and first-phase insulin exocytosis.

<h4>Background</h4>A variant of the CDKAL1 gene was reported to be associated with type 2 diabetes and reduced insulin release in humans; however, the role of CDKAL1 in β cells is largely unknown. Therefore, to determine the role of CDKAL1 in insulin release from β cells, we studied insu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mica Ohara-Imaizumi, Masashi Yoshida, Kyota Aoyagi, Taro Saito, Tadashi Okamura, Hitoshi Takenaka, Yoshihiro Akimoto, Yoko Nakamichi, Rieko Takanashi-Yanobu, Chiyono Nishiwaki, Hayato Kawakami, Norihiro Kato, Shin-ichi Hisanaga, Masafumi Kakei, Shinya Nagamatsu
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2010
Materias:
R
Q
Acceso en línea:https://doaj.org/article/26645a16c5be489a9a8fe1a5189a385b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<h4>Background</h4>A variant of the CDKAL1 gene was reported to be associated with type 2 diabetes and reduced insulin release in humans; however, the role of CDKAL1 in β cells is largely unknown. Therefore, to determine the role of CDKAL1 in insulin release from β cells, we studied insulin release profiles in CDKAL1 gene knockout (CDKAL1 KO) mice.<h4>Principal findings</h4>Total internal reflection fluorescence imaging of CDKAL1 KO β cells showed that the number of fusion events during first-phase insulin release was reduced. However, there was no significant difference in the number of fusion events during second-phase release or high K(+)-induced release between WT and KO cells. CDKAL1 deletion resulted in a delayed and slow increase in cytosolic free Ca(2+) concentration during high glucose stimulation. Patch-clamp experiments revealed that the responsiveness of ATP-sensitive K(+) (K(ATP)) channels to glucose was blunted in KO cells. In addition, glucose-induced ATP generation was impaired. Although CDKAL1 is homologous to cyclin-dependent kinase 5 (CDK5) regulatory subunit-associated protein 1, there was no difference in the kinase activity of CDK5 between WT and CDKAL1 KO islets.<h4>Conclusions/significance</h4>We provide the first report describing the function of CDKAL1 in β cells. Our results indicate that CDKAL1 controls first-phase insulin exocytosis in β cells by facilitating ATP generation, K(ATP) channel responsiveness and the subsequent activity of Ca(2+) channels through pathways other than CDK5-mediated regulation.