Head-to-head comparison of clustering methods for heterogeneous data: a simulation-driven benchmark
Abstract The choice of the most appropriate unsupervised machine-learning method for “heterogeneous” or “mixed” data, i.e. with both continuous and categorical variables, can be challenging. Our aim was to examine the performance of various clustering strategies for mixed data using both simulated a...
Guardado en:
Autores principales: | Gregoire Preud’homme, Kevin Duarte, Kevin Dalleau, Claire Lacomblez, Emmanuel Bresso, Malika Smaïl-Tabbone, Miguel Couceiro, Marie-Dominique Devignes, Masatake Kobayashi, Olivier Huttin, João Pedro Ferreira, Faiez Zannad, Patrick Rossignol, Nicolas Girerd |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/26646d58a34f4588aac72200ad772731 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Arterial and Cardiac Remodeling Associated With Extra Weight Gain in an Isolated Abdominal Obesity Cohort
por: Damien Mandry, et al.
Publicado: (2021) -
Head
por: Taryn Elaine O'Neill
Publicado: (2019) -
The Silence of Heads
por: Kayne Richard S.
Publicado: (2016) -
The Olokun head reconsidered
por: Paul T. Craddock, et al.
Publicado: (2013) -
Head & face medicine
Publicado: (2005)