Biochemical consequences of two clinically relevant ND-gene mutations in Escherichia coli respiratory complex I

Abstract NADH:ubiquinone oxidoreductase (respiratory complex I) plays a major role in energy metabolism by coupling electron transfer from NADH to quinone with proton translocation across the membrane. Complex I deficiencies were found to be the most common source of human mitochondrial dysfunction...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Franziska Nuber, Johannes Schimpf, Jean-Paul di Rago, Déborah Tribouillard-Tanvier, Vincent Procaccio, Marie-Laure Martin-Negrier, Aurélien Trimouille, Olivier Biner, Christoph von Ballmoos, Thorsten Friedrich
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/26652c8a0a244e3ead826a846ee6b58d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:26652c8a0a244e3ead826a846ee6b58d
record_format dspace
spelling oai:doaj.org-article:26652c8a0a244e3ead826a846ee6b58d2021-12-02T17:23:47ZBiochemical consequences of two clinically relevant ND-gene mutations in Escherichia coli respiratory complex I10.1038/s41598-021-91631-32045-2322https://doaj.org/article/26652c8a0a244e3ead826a846ee6b58d2021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-91631-3https://doaj.org/toc/2045-2322Abstract NADH:ubiquinone oxidoreductase (respiratory complex I) plays a major role in energy metabolism by coupling electron transfer from NADH to quinone with proton translocation across the membrane. Complex I deficiencies were found to be the most common source of human mitochondrial dysfunction that manifest in a wide variety of neurodegenerative diseases. Seven subunits of human complex I are encoded by mitochondrial DNA (mtDNA) that carry an unexpectedly large number of mutations discovered in mitochondria from patients’ tissues. However, whether or how these genetic aberrations affect complex I at a molecular level is unknown. Here, we used Escherichia coli as a model system to biochemically characterize two mutations that were found in mtDNA of patients. The V253AMT-ND5 mutation completely disturbed the assembly of complex I, while the mutation D199GMT-ND1 led to the assembly of a stable complex capable to catalyze redox-driven proton translocation. However, the latter mutation perturbs quinone reduction leading to a diminished activity. D199MT-ND1 is part of a cluster of charged amino acid residues that are suggested to be important for efficient coupling of quinone reduction and proton translocation. A mechanism considering the role of D199MT-ND1 for energy conservation in complex I is discussed.Franziska NuberJohannes SchimpfJean-Paul di RagoDéborah Tribouillard-TanvierVincent ProcaccioMarie-Laure Martin-NegrierAurélien TrimouilleOlivier BinerChristoph von BallmoosThorsten FriedrichNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Franziska Nuber
Johannes Schimpf
Jean-Paul di Rago
Déborah Tribouillard-Tanvier
Vincent Procaccio
Marie-Laure Martin-Negrier
Aurélien Trimouille
Olivier Biner
Christoph von Ballmoos
Thorsten Friedrich
Biochemical consequences of two clinically relevant ND-gene mutations in Escherichia coli respiratory complex I
description Abstract NADH:ubiquinone oxidoreductase (respiratory complex I) plays a major role in energy metabolism by coupling electron transfer from NADH to quinone with proton translocation across the membrane. Complex I deficiencies were found to be the most common source of human mitochondrial dysfunction that manifest in a wide variety of neurodegenerative diseases. Seven subunits of human complex I are encoded by mitochondrial DNA (mtDNA) that carry an unexpectedly large number of mutations discovered in mitochondria from patients’ tissues. However, whether or how these genetic aberrations affect complex I at a molecular level is unknown. Here, we used Escherichia coli as a model system to biochemically characterize two mutations that were found in mtDNA of patients. The V253AMT-ND5 mutation completely disturbed the assembly of complex I, while the mutation D199GMT-ND1 led to the assembly of a stable complex capable to catalyze redox-driven proton translocation. However, the latter mutation perturbs quinone reduction leading to a diminished activity. D199MT-ND1 is part of a cluster of charged amino acid residues that are suggested to be important for efficient coupling of quinone reduction and proton translocation. A mechanism considering the role of D199MT-ND1 for energy conservation in complex I is discussed.
format article
author Franziska Nuber
Johannes Schimpf
Jean-Paul di Rago
Déborah Tribouillard-Tanvier
Vincent Procaccio
Marie-Laure Martin-Negrier
Aurélien Trimouille
Olivier Biner
Christoph von Ballmoos
Thorsten Friedrich
author_facet Franziska Nuber
Johannes Schimpf
Jean-Paul di Rago
Déborah Tribouillard-Tanvier
Vincent Procaccio
Marie-Laure Martin-Negrier
Aurélien Trimouille
Olivier Biner
Christoph von Ballmoos
Thorsten Friedrich
author_sort Franziska Nuber
title Biochemical consequences of two clinically relevant ND-gene mutations in Escherichia coli respiratory complex I
title_short Biochemical consequences of two clinically relevant ND-gene mutations in Escherichia coli respiratory complex I
title_full Biochemical consequences of two clinically relevant ND-gene mutations in Escherichia coli respiratory complex I
title_fullStr Biochemical consequences of two clinically relevant ND-gene mutations in Escherichia coli respiratory complex I
title_full_unstemmed Biochemical consequences of two clinically relevant ND-gene mutations in Escherichia coli respiratory complex I
title_sort biochemical consequences of two clinically relevant nd-gene mutations in escherichia coli respiratory complex i
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/26652c8a0a244e3ead826a846ee6b58d
work_keys_str_mv AT franziskanuber biochemicalconsequencesoftwoclinicallyrelevantndgenemutationsinescherichiacolirespiratorycomplexi
AT johannesschimpf biochemicalconsequencesoftwoclinicallyrelevantndgenemutationsinescherichiacolirespiratorycomplexi
AT jeanpauldirago biochemicalconsequencesoftwoclinicallyrelevantndgenemutationsinescherichiacolirespiratorycomplexi
AT deborahtribouillardtanvier biochemicalconsequencesoftwoclinicallyrelevantndgenemutationsinescherichiacolirespiratorycomplexi
AT vincentprocaccio biochemicalconsequencesoftwoclinicallyrelevantndgenemutationsinescherichiacolirespiratorycomplexi
AT marielauremartinnegrier biochemicalconsequencesoftwoclinicallyrelevantndgenemutationsinescherichiacolirespiratorycomplexi
AT aurelientrimouille biochemicalconsequencesoftwoclinicallyrelevantndgenemutationsinescherichiacolirespiratorycomplexi
AT olivierbiner biochemicalconsequencesoftwoclinicallyrelevantndgenemutationsinescherichiacolirespiratorycomplexi
AT christophvonballmoos biochemicalconsequencesoftwoclinicallyrelevantndgenemutationsinescherichiacolirespiratorycomplexi
AT thorstenfriedrich biochemicalconsequencesoftwoclinicallyrelevantndgenemutationsinescherichiacolirespiratorycomplexi
_version_ 1718380958647844864