Hepatic mitochondrial function analysis using needle liver biopsy samples.

<h4>Backgrounds and aim</h4>Current assessment of pre-operative liver function relies upon biochemical blood tests and histology but these only indirectly measure liver function. Mitochondrial function (MF) analysis allows direct measurement of cellular metabolic function and may provide...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Michael J J Chu, Anthony R J Phillips, Alexander W G Hosking, Julia R MacDonald, Adam S J R Bartlett, Anthony J R Hickey
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/266fe634e9b643ec8e043acff4dcb4f7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<h4>Backgrounds and aim</h4>Current assessment of pre-operative liver function relies upon biochemical blood tests and histology but these only indirectly measure liver function. Mitochondrial function (MF) analysis allows direct measurement of cellular metabolic function and may provide an additional index of hepatic health. Conventional MF analysis requires substantial tissue samples (>100 mg) obtained at open surgery. Here we report a method to assess MF using <3 mg of tissue obtained by a Tru-cut® biopsy needle making it suitable for percutaneous application.<h4>Methods</h4>An 18G Bard® Max-core® biopsy instrument was used to collect samples. The optimal Tru-cut® sample weight, stability in ice-cold University of Wisconsin solution, reproducibility and protocol utility was initially evaluated in Wistar rat livers then confirmed in human samples. MF was measured in saponin-permeabilized samples using high-resolution respirometry.<h4>Results</h4>The average mass of a single rat and human liver Tru-cut® biopsy was 5.60±0.30 and 5.16±0.15 mg, respectively (mean; standard error of mean). Two milligram of sample was found the lowest feasible mass for the MF assay. Tissue MF declined after 1 hour of cold storage. Six replicate measurements within rats and humans (n = 6 each) showed low coefficient of variation (<10%) in measurements of State-III respiration, electron transport chain (ETC) capacity and respiratory control ratio (RCR). Ischemic rat and human liver samples consistently showed lower State-III respiration, ETC capacity and RCR, compared to normal perfused liver samples.<h4>Conclusion</h4>Consistent measurement of liver MF and detection of derangement in a disease state was successfully demonstrated using less than half the tissue from a single Tru-cut® biopsy. Using this technique outpatient assessment of liver MF is now feasible, providing a new assay for the evaluation of hepatic function.