Machine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen
Structural variation in genomes of the same species is frequent but what drives the rearrangements remains unclear. Machine-learning of rearrangement patterns among telomere-to-telomere assemblies can accurately identify regions of intrinsic DNA instability in a eukaryotic pathogen.
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/26805112d9a64392bfb163399db5f589 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Structural variation in genomes of the same species is frequent but what drives the rearrangements remains unclear. Machine-learning of rearrangement patterns among telomere-to-telomere assemblies can accurately identify regions of intrinsic DNA instability in a eukaryotic pathogen. |
---|