Machine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen

Structural variation in genomes of the same species is frequent but what drives the rearrangements remains unclear. Machine-learning of rearrangement patterns among telomere-to-telomere assemblies can accurately identify regions of intrinsic DNA instability in a eukaryotic pathogen.

Guardado en:
Detalles Bibliográficos
Autores principales: Thomas Badet, Simone Fouché, Fanny E. Hartmann, Marcello Zala, Daniel Croll
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/26805112d9a64392bfb163399db5f589
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:26805112d9a64392bfb163399db5f589
record_format dspace
spelling oai:doaj.org-article:26805112d9a64392bfb163399db5f5892021-12-02T17:52:09ZMachine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen10.1038/s41467-021-23862-x2041-1723https://doaj.org/article/26805112d9a64392bfb163399db5f5892021-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23862-xhttps://doaj.org/toc/2041-1723Structural variation in genomes of the same species is frequent but what drives the rearrangements remains unclear. Machine-learning of rearrangement patterns among telomere-to-telomere assemblies can accurately identify regions of intrinsic DNA instability in a eukaryotic pathogen.Thomas BadetSimone FouchéFanny E. HartmannMarcello ZalaDaniel CrollNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Thomas Badet
Simone Fouché
Fanny E. Hartmann
Marcello Zala
Daniel Croll
Machine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen
description Structural variation in genomes of the same species is frequent but what drives the rearrangements remains unclear. Machine-learning of rearrangement patterns among telomere-to-telomere assemblies can accurately identify regions of intrinsic DNA instability in a eukaryotic pathogen.
format article
author Thomas Badet
Simone Fouché
Fanny E. Hartmann
Marcello Zala
Daniel Croll
author_facet Thomas Badet
Simone Fouché
Fanny E. Hartmann
Marcello Zala
Daniel Croll
author_sort Thomas Badet
title Machine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen
title_short Machine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen
title_full Machine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen
title_fullStr Machine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen
title_full_unstemmed Machine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen
title_sort machine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/26805112d9a64392bfb163399db5f589
work_keys_str_mv AT thomasbadet machinelearningpredictsgenomicdeterminantsofmeiosisdrivenstructuralvariationinaeukaryoticpathogen
AT simonefouche machinelearningpredictsgenomicdeterminantsofmeiosisdrivenstructuralvariationinaeukaryoticpathogen
AT fannyehartmann machinelearningpredictsgenomicdeterminantsofmeiosisdrivenstructuralvariationinaeukaryoticpathogen
AT marcellozala machinelearningpredictsgenomicdeterminantsofmeiosisdrivenstructuralvariationinaeukaryoticpathogen
AT danielcroll machinelearningpredictsgenomicdeterminantsofmeiosisdrivenstructuralvariationinaeukaryoticpathogen
_version_ 1718379215724740608