Machine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen
Structural variation in genomes of the same species is frequent but what drives the rearrangements remains unclear. Machine-learning of rearrangement patterns among telomere-to-telomere assemblies can accurately identify regions of intrinsic DNA instability in a eukaryotic pathogen.
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/26805112d9a64392bfb163399db5f589 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:26805112d9a64392bfb163399db5f589 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:26805112d9a64392bfb163399db5f5892021-12-02T17:52:09ZMachine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen10.1038/s41467-021-23862-x2041-1723https://doaj.org/article/26805112d9a64392bfb163399db5f5892021-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23862-xhttps://doaj.org/toc/2041-1723Structural variation in genomes of the same species is frequent but what drives the rearrangements remains unclear. Machine-learning of rearrangement patterns among telomere-to-telomere assemblies can accurately identify regions of intrinsic DNA instability in a eukaryotic pathogen.Thomas BadetSimone FouchéFanny E. HartmannMarcello ZalaDaniel CrollNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Thomas Badet Simone Fouché Fanny E. Hartmann Marcello Zala Daniel Croll Machine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen |
description |
Structural variation in genomes of the same species is frequent but what drives the rearrangements remains unclear. Machine-learning of rearrangement patterns among telomere-to-telomere assemblies can accurately identify regions of intrinsic DNA instability in a eukaryotic pathogen. |
format |
article |
author |
Thomas Badet Simone Fouché Fanny E. Hartmann Marcello Zala Daniel Croll |
author_facet |
Thomas Badet Simone Fouché Fanny E. Hartmann Marcello Zala Daniel Croll |
author_sort |
Thomas Badet |
title |
Machine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen |
title_short |
Machine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen |
title_full |
Machine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen |
title_fullStr |
Machine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen |
title_full_unstemmed |
Machine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen |
title_sort |
machine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/26805112d9a64392bfb163399db5f589 |
work_keys_str_mv |
AT thomasbadet machinelearningpredictsgenomicdeterminantsofmeiosisdrivenstructuralvariationinaeukaryoticpathogen AT simonefouche machinelearningpredictsgenomicdeterminantsofmeiosisdrivenstructuralvariationinaeukaryoticpathogen AT fannyehartmann machinelearningpredictsgenomicdeterminantsofmeiosisdrivenstructuralvariationinaeukaryoticpathogen AT marcellozala machinelearningpredictsgenomicdeterminantsofmeiosisdrivenstructuralvariationinaeukaryoticpathogen AT danielcroll machinelearningpredictsgenomicdeterminantsofmeiosisdrivenstructuralvariationinaeukaryoticpathogen |
_version_ |
1718379215724740608 |