Machine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen
Structural variation in genomes of the same species is frequent but what drives the rearrangements remains unclear. Machine-learning of rearrangement patterns among telomere-to-telomere assemblies can accurately identify regions of intrinsic DNA instability in a eukaryotic pathogen.
Guardado en:
Autores principales: | Thomas Badet, Simone Fouché, Fanny E. Hartmann, Marcello Zala, Daniel Croll |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/26805112d9a64392bfb163399db5f589 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A population-level invasion by transposable elements triggers genome expansion in a fungal pathogen
por: Ursula Oggenfuss, et al.
Publicado: (2021) -
Discrepancy variation of dinucleotide microsatellite repeats in eukaryotic genomes
por: GAO,HUAN, et al.
Publicado: (2009) -
Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola.
por: Alexander H J Wittenberg, et al.
Publicado: (2009) -
Determinants of genome-wide distribution and evolution of uORFs in eukaryotes
por: Hong Zhang, et al.
Publicado: (2021) -
Comparative Genomics Analyses of Lifestyle Transitions at the Origin of an Invasive Fungal Pathogen in the Genus <italic toggle="yes">Cryphonectria</italic>
por: Lea Stauber, et al.
Publicado: (2020)