Predicting scalar coupling constants by graph angle-attention neural network
Abstract Scalar coupling constant (SCC), directly measured by nuclear magnetic resonance (NMR) spectroscopy, is a key parameter for molecular structure analysis, and widely used to predict unknown molecular structure. Restricted by the high cost of NMR experiments, it is impossible to measure the SC...
Guardado en:
Autores principales: | Jia Fang, Linyuan Hu, Jianfeng Dong, Haowei Li, Hui Wang, Huafen Zhao, Yao Zhang, Min Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/26938c079f914428b59f6a95757082b4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Scalarized Einstein–Maxwell-scalar black holes in a cavity
por: Feiyu Yao
Publicado: (2021) -
Personal Interest Attention Graph Neural Networks for Session-Based Recommendation
por: Xiangde Zhang, et al.
Publicado: (2021) -
Data Mining of Students’ Consumption Behaviour Pattern Based on Self-Attention Graph Neural Network
por: Fangyao Xu, et al.
Publicado: (2021) -
Mandarin Yě and Scalarity
por: Yang Zhaole
Publicado: (2018) -
SGA-Net: Self-Constructing Graph Attention Neural Network for Semantic Segmentation of Remote Sensing Images
por: Wenjie Zi, et al.
Publicado: (2021)