Predicting scalar coupling constants by graph angle-attention neural network
Abstract Scalar coupling constant (SCC), directly measured by nuclear magnetic resonance (NMR) spectroscopy, is a key parameter for molecular structure analysis, and widely used to predict unknown molecular structure. Restricted by the high cost of NMR experiments, it is impossible to measure the SC...
Enregistré dans:
Auteurs principaux: | Jia Fang, Linyuan Hu, Jianfeng Dong, Haowei Li, Hui Wang, Huafen Zhao, Yao Zhang, Min Liu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/26938c079f914428b59f6a95757082b4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Scalarized Einstein–Maxwell-scalar black holes in a cavity
par: Feiyu Yao
Publié: (2021) -
Personal Interest Attention Graph Neural Networks for Session-Based Recommendation
par: Xiangde Zhang, et autres
Publié: (2021) -
Data Mining of Students’ Consumption Behaviour Pattern Based on Self-Attention Graph Neural Network
par: Fangyao Xu, et autres
Publié: (2021) -
Mandarin Yě and Scalarity
par: Yang Zhaole
Publié: (2018) -
SGA-Net: Self-Constructing Graph Attention Neural Network for Semantic Segmentation of Remote Sensing Images
par: Wenjie Zi, et autres
Publié: (2021)