Map-Matching Using Hidden Markov Model and Path Choice Preferences under Sparse Trajectory
In the field of map matching, algorithms using topological relationships of road networks along with other data are normally suitable for high frequency trajectory data. However, for low frequency trajectory data, the above methods may cause problems of low matching accuracy. In addition, most past...
Guardado en:
Autores principales: | Zhengang Xiong, Bin Li, Dongmei Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2696185a319d4770a52215401a4a2d9f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
When Eyes Wander Around: Mind-Wandering as Revealed by Eye Movement Analysis with Hidden Markov Models
por: Hsing-Hao Lee, et al.
Publicado: (2021) -
Optimal state selection and tuning parameters for a degradation model in bearings using Mel-Frequency Cepstral Coefficients and Hidden Markov Chains
por: Holguín,Mauricio, et al.
Publicado: (2016) -
Hidden neural networks for transmembrane protein topology prediction
por: Ioannis A. Tamposis, et al.
Publicado: (2021) -
Finite-time asynchronous sliding mode control for Markov jump systems with actuator saturation
por: Yuqin Si, et al.
Publicado: (2021) -
The Brazilian Urban System: the trajectories of Brazilian cities between general dynamics and specific peculiarities
por: Cosmo Antonio Ignazzi
Publicado: (2015)