Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces
<p/> <p>Matthews (1994) introduced a new distance <inline-formula> <graphic file="1687-1812-2011-508730-i1.gif"/></inline-formula> on a nonempty set <inline-formula> <graphic file="1687-1812-2011-508730-i2.gif"/></inline-formula>, w...
Saved in:
Main Authors: | , |
---|---|
Format: | article |
Language: | EN |
Published: |
SpringerOpen
2011
|
Subjects: | |
Online Access: | https://doaj.org/article/269f5c2d25624915a3571ac6c427e151 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | <p/> <p>Matthews (1994) introduced a new distance <inline-formula> <graphic file="1687-1812-2011-508730-i1.gif"/></inline-formula> on a nonempty set <inline-formula> <graphic file="1687-1812-2011-508730-i2.gif"/></inline-formula>, which is called partial metric. If <inline-formula> <graphic file="1687-1812-2011-508730-i3.gif"/></inline-formula> is a partial metric space, then <inline-formula> <graphic file="1687-1812-2011-508730-i4.gif"/></inline-formula> may not be zero for <inline-formula> <graphic file="1687-1812-2011-508730-i5.gif"/></inline-formula>. In the present paper, we give some fixed point results on these interesting spaces.</p> |
---|