Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces

<p/> <p>Matthews (1994) introduced a new distance <inline-formula> <graphic file="1687-1812-2011-508730-i1.gif"/></inline-formula> on a nonempty set <inline-formula> <graphic file="1687-1812-2011-508730-i2.gif"/></inline-formula>, w...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Altun Ishak, Erduran Ali
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2011
Materias:
Acceso en línea:https://doaj.org/article/269f5c2d25624915a3571ac6c427e151
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:269f5c2d25624915a3571ac6c427e151
record_format dspace
spelling oai:doaj.org-article:269f5c2d25624915a3571ac6c427e1512021-12-02T10:58:51ZFixed Point Theorems for Monotone Mappings on Partial Metric Spaces1687-18201687-1812https://doaj.org/article/269f5c2d25624915a3571ac6c427e1512011-01-01T00:00:00Zhttp://www.fixedpointtheoryandapplications.com/content/2011/508730https://doaj.org/toc/1687-1820https://doaj.org/toc/1687-1812<p/> <p>Matthews (1994) introduced a new distance <inline-formula> <graphic file="1687-1812-2011-508730-i1.gif"/></inline-formula> on a nonempty set <inline-formula> <graphic file="1687-1812-2011-508730-i2.gif"/></inline-formula>, which is called partial metric. If <inline-formula> <graphic file="1687-1812-2011-508730-i3.gif"/></inline-formula> is a partial metric space, then <inline-formula> <graphic file="1687-1812-2011-508730-i4.gif"/></inline-formula> may not be zero for <inline-formula> <graphic file="1687-1812-2011-508730-i5.gif"/></inline-formula>. In the present paper, we give some fixed point results on these interesting spaces.</p>Altun IshakErduran AliSpringerOpenarticleApplied mathematics. Quantitative methodsT57-57.97AnalysisQA299.6-433ENFixed Point Theory and Applications, Vol 2011, Iss 1, p 508730 (2011)
institution DOAJ
collection DOAJ
language EN
topic Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
spellingShingle Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
Altun Ishak
Erduran Ali
Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces
description <p/> <p>Matthews (1994) introduced a new distance <inline-formula> <graphic file="1687-1812-2011-508730-i1.gif"/></inline-formula> on a nonempty set <inline-formula> <graphic file="1687-1812-2011-508730-i2.gif"/></inline-formula>, which is called partial metric. If <inline-formula> <graphic file="1687-1812-2011-508730-i3.gif"/></inline-formula> is a partial metric space, then <inline-formula> <graphic file="1687-1812-2011-508730-i4.gif"/></inline-formula> may not be zero for <inline-formula> <graphic file="1687-1812-2011-508730-i5.gif"/></inline-formula>. In the present paper, we give some fixed point results on these interesting spaces.</p>
format article
author Altun Ishak
Erduran Ali
author_facet Altun Ishak
Erduran Ali
author_sort Altun Ishak
title Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces
title_short Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces
title_full Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces
title_fullStr Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces
title_full_unstemmed Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces
title_sort fixed point theorems for monotone mappings on partial metric spaces
publisher SpringerOpen
publishDate 2011
url https://doaj.org/article/269f5c2d25624915a3571ac6c427e151
work_keys_str_mv AT altunishak fixedpointtheoremsformonotonemappingsonpartialmetricspaces
AT erduranali fixedpointtheoremsformonotonemappingsonpartialmetricspaces
_version_ 1718396395325489152