Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces
<p/> <p>Matthews (1994) introduced a new distance <inline-formula> <graphic file="1687-1812-2011-508730-i1.gif"/></inline-formula> on a nonempty set <inline-formula> <graphic file="1687-1812-2011-508730-i2.gif"/></inline-formula>, w...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/269f5c2d25624915a3571ac6c427e151 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:269f5c2d25624915a3571ac6c427e151 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:269f5c2d25624915a3571ac6c427e1512021-12-02T10:58:51ZFixed Point Theorems for Monotone Mappings on Partial Metric Spaces1687-18201687-1812https://doaj.org/article/269f5c2d25624915a3571ac6c427e1512011-01-01T00:00:00Zhttp://www.fixedpointtheoryandapplications.com/content/2011/508730https://doaj.org/toc/1687-1820https://doaj.org/toc/1687-1812<p/> <p>Matthews (1994) introduced a new distance <inline-formula> <graphic file="1687-1812-2011-508730-i1.gif"/></inline-formula> on a nonempty set <inline-formula> <graphic file="1687-1812-2011-508730-i2.gif"/></inline-formula>, which is called partial metric. If <inline-formula> <graphic file="1687-1812-2011-508730-i3.gif"/></inline-formula> is a partial metric space, then <inline-formula> <graphic file="1687-1812-2011-508730-i4.gif"/></inline-formula> may not be zero for <inline-formula> <graphic file="1687-1812-2011-508730-i5.gif"/></inline-formula>. In the present paper, we give some fixed point results on these interesting spaces.</p>Altun IshakErduran AliSpringerOpenarticleApplied mathematics. Quantitative methodsT57-57.97AnalysisQA299.6-433ENFixed Point Theory and Applications, Vol 2011, Iss 1, p 508730 (2011) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Applied mathematics. Quantitative methods T57-57.97 Analysis QA299.6-433 |
spellingShingle |
Applied mathematics. Quantitative methods T57-57.97 Analysis QA299.6-433 Altun Ishak Erduran Ali Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces |
description |
<p/> <p>Matthews (1994) introduced a new distance <inline-formula> <graphic file="1687-1812-2011-508730-i1.gif"/></inline-formula> on a nonempty set <inline-formula> <graphic file="1687-1812-2011-508730-i2.gif"/></inline-formula>, which is called partial metric. If <inline-formula> <graphic file="1687-1812-2011-508730-i3.gif"/></inline-formula> is a partial metric space, then <inline-formula> <graphic file="1687-1812-2011-508730-i4.gif"/></inline-formula> may not be zero for <inline-formula> <graphic file="1687-1812-2011-508730-i5.gif"/></inline-formula>. In the present paper, we give some fixed point results on these interesting spaces.</p> |
format |
article |
author |
Altun Ishak Erduran Ali |
author_facet |
Altun Ishak Erduran Ali |
author_sort |
Altun Ishak |
title |
Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces |
title_short |
Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces |
title_full |
Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces |
title_fullStr |
Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces |
title_full_unstemmed |
Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces |
title_sort |
fixed point theorems for monotone mappings on partial metric spaces |
publisher |
SpringerOpen |
publishDate |
2011 |
url |
https://doaj.org/article/269f5c2d25624915a3571ac6c427e151 |
work_keys_str_mv |
AT altunishak fixedpointtheoremsformonotonemappingsonpartialmetricspaces AT erduranali fixedpointtheoremsformonotonemappingsonpartialmetricspaces |
_version_ |
1718396395325489152 |