Strength and Microstructural Investigation of Quaternary Blended High-Strength Concrete

This research focuses on studying the effect of different supplementary cementitious materials (SCMs) such as waste ceramic powder (WCP), lime powder (LP), and ground granulated blast furnace slag (GGBS) in combination on strength characteristics and microstructure of quaternary blended high-strengt...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ayele Bereda, Belachew Asteray
Formato: article
Lenguaje:EN
Publicado: Hindawi Limited 2021
Materias:
Acceso en línea:https://doaj.org/article/26a2fbfa91834ed0a537a5c790ccf504
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:26a2fbfa91834ed0a537a5c790ccf504
record_format dspace
spelling oai:doaj.org-article:26a2fbfa91834ed0a537a5c790ccf5042021-11-22T01:11:17ZStrength and Microstructural Investigation of Quaternary Blended High-Strength Concrete1687-809410.1155/2021/8404988https://doaj.org/article/26a2fbfa91834ed0a537a5c790ccf5042021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/8404988https://doaj.org/toc/1687-8094This research focuses on studying the effect of different supplementary cementitious materials (SCMs) such as waste ceramic powder (WCP), lime powder (LP), and ground granulated blast furnace slag (GGBS) in combination on strength characteristics and microstructure of quaternary blended high-strength concrete. To achieve the aims of the study, necessary physical and chemical composition tests were done for the raw materials. Then, mixes were designed into control mix with 100% Ordinary Portland Cement (OPC) and experimental mixes containing 30%, 40%, 50%, and 60% of GGBS, WCP, and LP in combination. Tests were conducted during casting and at curing ages of 7 and 28 days. Accordingly, the control mix which is concrete grade 50 (C-50) as per American Concrete Institute (ACI) mix design is used as a reference for comparison of test results with those specimens produced by partial replacement of SCMs. The characterizations of high-strength concrete are done using consistency, setting time, workability, compressive strength, flexural strength, and morphological tests. The optimum percentage replacement is 50% OPC replacement by 30% GGBS + 10% WCP + 10% LP. Based on the experimental investigations, the workability increases as the replacement level of SCMs increases from 30% to 60% by weight. Compressive strength and flexural strength results increase up to 11.41% and 20% when the percentage replacement increases from 30% to 50% of SCMs replacement at 28 days of curing time, respectively. There are also improvement in the microstructure and significant cost saving due to replacing OPC partially with SCMs with proportions mentioned above. Therefore, the practice of utilizing increased percentage of SCMs in quaternary blend in concrete can be beneficial for the construction industry and sustainability without compromising the quality of the concrete product.Ayele BeredaBelachew AsterayHindawi LimitedarticleEngineering (General). Civil engineering (General)TA1-2040ENAdvances in Civil Engineering, Vol 2021 (2021)
institution DOAJ
collection DOAJ
language EN
topic Engineering (General). Civil engineering (General)
TA1-2040
spellingShingle Engineering (General). Civil engineering (General)
TA1-2040
Ayele Bereda
Belachew Asteray
Strength and Microstructural Investigation of Quaternary Blended High-Strength Concrete
description This research focuses on studying the effect of different supplementary cementitious materials (SCMs) such as waste ceramic powder (WCP), lime powder (LP), and ground granulated blast furnace slag (GGBS) in combination on strength characteristics and microstructure of quaternary blended high-strength concrete. To achieve the aims of the study, necessary physical and chemical composition tests were done for the raw materials. Then, mixes were designed into control mix with 100% Ordinary Portland Cement (OPC) and experimental mixes containing 30%, 40%, 50%, and 60% of GGBS, WCP, and LP in combination. Tests were conducted during casting and at curing ages of 7 and 28 days. Accordingly, the control mix which is concrete grade 50 (C-50) as per American Concrete Institute (ACI) mix design is used as a reference for comparison of test results with those specimens produced by partial replacement of SCMs. The characterizations of high-strength concrete are done using consistency, setting time, workability, compressive strength, flexural strength, and morphological tests. The optimum percentage replacement is 50% OPC replacement by 30% GGBS + 10% WCP + 10% LP. Based on the experimental investigations, the workability increases as the replacement level of SCMs increases from 30% to 60% by weight. Compressive strength and flexural strength results increase up to 11.41% and 20% when the percentage replacement increases from 30% to 50% of SCMs replacement at 28 days of curing time, respectively. There are also improvement in the microstructure and significant cost saving due to replacing OPC partially with SCMs with proportions mentioned above. Therefore, the practice of utilizing increased percentage of SCMs in quaternary blend in concrete can be beneficial for the construction industry and sustainability without compromising the quality of the concrete product.
format article
author Ayele Bereda
Belachew Asteray
author_facet Ayele Bereda
Belachew Asteray
author_sort Ayele Bereda
title Strength and Microstructural Investigation of Quaternary Blended High-Strength Concrete
title_short Strength and Microstructural Investigation of Quaternary Blended High-Strength Concrete
title_full Strength and Microstructural Investigation of Quaternary Blended High-Strength Concrete
title_fullStr Strength and Microstructural Investigation of Quaternary Blended High-Strength Concrete
title_full_unstemmed Strength and Microstructural Investigation of Quaternary Blended High-Strength Concrete
title_sort strength and microstructural investigation of quaternary blended high-strength concrete
publisher Hindawi Limited
publishDate 2021
url https://doaj.org/article/26a2fbfa91834ed0a537a5c790ccf504
work_keys_str_mv AT ayelebereda strengthandmicrostructuralinvestigationofquaternaryblendedhighstrengthconcrete
AT belachewasteray strengthandmicrostructuralinvestigationofquaternaryblendedhighstrengthconcrete
_version_ 1718418269788962816