Improvement of Gas Drainage Efficiency via Optimization of Sealing Depth of Cross-Measure Boreholes
The sealing depth of a gas-drainage borehole is critically important as it directly affects the efficiency of the whole drainage system. In order to determine the shortest reasonable sealing depth, in this paper, a theoretical drainage model using different sealing depths was proposed. Based on theo...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/26c76fa07d744da9a8cd0f83369fe6e6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:26c76fa07d744da9a8cd0f83369fe6e6 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:26c76fa07d744da9a8cd0f83369fe6e62021-11-08T02:36:10ZImprovement of Gas Drainage Efficiency via Optimization of Sealing Depth of Cross-Measure Boreholes1687-809410.1155/2021/5521666https://doaj.org/article/26c76fa07d744da9a8cd0f83369fe6e62021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/5521666https://doaj.org/toc/1687-8094The sealing depth of a gas-drainage borehole is critically important as it directly affects the efficiency of the whole drainage system. In order to determine the shortest reasonable sealing depth, in this paper, a theoretical drainage model using different sealing depths was proposed. Based on theoretical analysis presented, two parts of the fractures system surrounding the drainage borehole were proposed, i.e. the fractures induced by roadway excavation and the fractures induced by borehole drilling. A series of geological in-situ tests and simulations research were conducted to determine the stress and fracture distributions in the surrounding rock of the borehole. The depths of crushing zones, plastic zones and stress concentration zones were determined as 5 m, 2 m and 12 m, respectively. Meanwhile, stress simulation shows that the depth of the stress concentration zone was 12 m from the roadway wall and the stress peak was located at the depth of 8 m, which can be verified by the results of drilling penetration velocity analysis. To determine the optimum sealing depth, gas drainage holes with different sealing depths were drilled in the field. The field results revealed that the crushing zones were the main area for air leakage, and the stress concentration induced by roadway excavation assisted in the reduction of air leakage. Therefore, the optimized sealing depth should both cover the plastic zone and the stress concentration zone. The research achievements can provide a quantitative method for the determination of optimum sealing depth in cross-measure drainage boreholes.Pu LiZhiheng ChengLiang ChenHongbing WangJialin CaoHindawi LimitedarticleEngineering (General). Civil engineering (General)TA1-2040ENAdvances in Civil Engineering, Vol 2021 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Engineering (General). Civil engineering (General) TA1-2040 |
spellingShingle |
Engineering (General). Civil engineering (General) TA1-2040 Pu Li Zhiheng Cheng Liang Chen Hongbing Wang Jialin Cao Improvement of Gas Drainage Efficiency via Optimization of Sealing Depth of Cross-Measure Boreholes |
description |
The sealing depth of a gas-drainage borehole is critically important as it directly affects the efficiency of the whole drainage system. In order to determine the shortest reasonable sealing depth, in this paper, a theoretical drainage model using different sealing depths was proposed. Based on theoretical analysis presented, two parts of the fractures system surrounding the drainage borehole were proposed, i.e. the fractures induced by roadway excavation and the fractures induced by borehole drilling. A series of geological in-situ tests and simulations research were conducted to determine the stress and fracture distributions in the surrounding rock of the borehole. The depths of crushing zones, plastic zones and stress concentration zones were determined as 5 m, 2 m and 12 m, respectively. Meanwhile, stress simulation shows that the depth of the stress concentration zone was 12 m from the roadway wall and the stress peak was located at the depth of 8 m, which can be verified by the results of drilling penetration velocity analysis. To determine the optimum sealing depth, gas drainage holes with different sealing depths were drilled in the field. The field results revealed that the crushing zones were the main area for air leakage, and the stress concentration induced by roadway excavation assisted in the reduction of air leakage. Therefore, the optimized sealing depth should both cover the plastic zone and the stress concentration zone. The research achievements can provide a quantitative method for the determination of optimum sealing depth in cross-measure drainage boreholes. |
format |
article |
author |
Pu Li Zhiheng Cheng Liang Chen Hongbing Wang Jialin Cao |
author_facet |
Pu Li Zhiheng Cheng Liang Chen Hongbing Wang Jialin Cao |
author_sort |
Pu Li |
title |
Improvement of Gas Drainage Efficiency via Optimization of Sealing Depth of Cross-Measure Boreholes |
title_short |
Improvement of Gas Drainage Efficiency via Optimization of Sealing Depth of Cross-Measure Boreholes |
title_full |
Improvement of Gas Drainage Efficiency via Optimization of Sealing Depth of Cross-Measure Boreholes |
title_fullStr |
Improvement of Gas Drainage Efficiency via Optimization of Sealing Depth of Cross-Measure Boreholes |
title_full_unstemmed |
Improvement of Gas Drainage Efficiency via Optimization of Sealing Depth of Cross-Measure Boreholes |
title_sort |
improvement of gas drainage efficiency via optimization of sealing depth of cross-measure boreholes |
publisher |
Hindawi Limited |
publishDate |
2021 |
url |
https://doaj.org/article/26c76fa07d744da9a8cd0f83369fe6e6 |
work_keys_str_mv |
AT puli improvementofgasdrainageefficiencyviaoptimizationofsealingdepthofcrossmeasureboreholes AT zhihengcheng improvementofgasdrainageefficiencyviaoptimizationofsealingdepthofcrossmeasureboreholes AT liangchen improvementofgasdrainageefficiencyviaoptimizationofsealingdepthofcrossmeasureboreholes AT hongbingwang improvementofgasdrainageefficiencyviaoptimizationofsealingdepthofcrossmeasureboreholes AT jialincao improvementofgasdrainageefficiencyviaoptimizationofsealingdepthofcrossmeasureboreholes |
_version_ |
1718443167973376000 |