Epsilon Nielsen fixed point theory
<p/> <p>Let <inline-formula><graphic file="1687-1812-2006-29470-i1.gif"/></inline-formula> be a map of a compact, connected Riemannian manifold, with or without boundary. For <inline-formula><graphic file="1687-1812-2006-29470-i2.gif"/>&l...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2006
|
Materias: | |
Acceso en línea: | https://doaj.org/article/26cdabb7468f445fb36fa5f37e435c03 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:26cdabb7468f445fb36fa5f37e435c03 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:26cdabb7468f445fb36fa5f37e435c032021-12-02T10:59:31ZEpsilon Nielsen fixed point theory1687-18201687-1812https://doaj.org/article/26cdabb7468f445fb36fa5f37e435c032006-01-01T00:00:00Zhttp://www.fixedpointtheoryandapplications.com/content/2006/29470https://doaj.org/toc/1687-1820https://doaj.org/toc/1687-1812<p/> <p>Let <inline-formula><graphic file="1687-1812-2006-29470-i1.gif"/></inline-formula> be a map of a compact, connected Riemannian manifold, with or without boundary. For <inline-formula><graphic file="1687-1812-2006-29470-i2.gif"/></inline-formula> sufficiently small, we introduce an <inline-formula><graphic file="1687-1812-2006-29470-i3.gif"/></inline-formula>-Nielsen number <inline-formula><graphic file="1687-1812-2006-29470-i4.gif"/></inline-formula> that is a lower bound for the number of fixed points of all self-maps of <inline-formula><graphic file="1687-1812-2006-29470-i5.gif"/></inline-formula> that are <inline-formula><graphic file="1687-1812-2006-29470-i6.gif"/></inline-formula>-homotopic to <inline-formula><graphic file="1687-1812-2006-29470-i7.gif"/></inline-formula>. We prove that there is always a map <inline-formula><graphic file="1687-1812-2006-29470-i8.gif"/></inline-formula> that is <inline-formula><graphic file="1687-1812-2006-29470-i9.gif"/></inline-formula>-homotopic to <inline-formula><graphic file="1687-1812-2006-29470-i10.gif"/></inline-formula> such that <inline-formula><graphic file="1687-1812-2006-29470-i11.gif"/></inline-formula> has exactly <inline-formula><graphic file="1687-1812-2006-29470-i12.gif"/></inline-formula> fixed points. We describe procedures for calculating <inline-formula><graphic file="1687-1812-2006-29470-i13.gif"/></inline-formula> for maps of <inline-formula><graphic file="1687-1812-2006-29470-i14.gif"/></inline-formula>-manifolds.</p> Brown Robert FSpringerOpenarticleApplied mathematics. Quantitative methodsT57-57.97AnalysisQA299.6-433ENFixed Point Theory and Applications, Vol 2006, Iss 1, p 29470 (2006) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Applied mathematics. Quantitative methods T57-57.97 Analysis QA299.6-433 |
spellingShingle |
Applied mathematics. Quantitative methods T57-57.97 Analysis QA299.6-433 Brown Robert F Epsilon Nielsen fixed point theory |
description |
<p/> <p>Let <inline-formula><graphic file="1687-1812-2006-29470-i1.gif"/></inline-formula> be a map of a compact, connected Riemannian manifold, with or without boundary. For <inline-formula><graphic file="1687-1812-2006-29470-i2.gif"/></inline-formula> sufficiently small, we introduce an <inline-formula><graphic file="1687-1812-2006-29470-i3.gif"/></inline-formula>-Nielsen number <inline-formula><graphic file="1687-1812-2006-29470-i4.gif"/></inline-formula> that is a lower bound for the number of fixed points of all self-maps of <inline-formula><graphic file="1687-1812-2006-29470-i5.gif"/></inline-formula> that are <inline-formula><graphic file="1687-1812-2006-29470-i6.gif"/></inline-formula>-homotopic to <inline-formula><graphic file="1687-1812-2006-29470-i7.gif"/></inline-formula>. We prove that there is always a map <inline-formula><graphic file="1687-1812-2006-29470-i8.gif"/></inline-formula> that is <inline-formula><graphic file="1687-1812-2006-29470-i9.gif"/></inline-formula>-homotopic to <inline-formula><graphic file="1687-1812-2006-29470-i10.gif"/></inline-formula> such that <inline-formula><graphic file="1687-1812-2006-29470-i11.gif"/></inline-formula> has exactly <inline-formula><graphic file="1687-1812-2006-29470-i12.gif"/></inline-formula> fixed points. We describe procedures for calculating <inline-formula><graphic file="1687-1812-2006-29470-i13.gif"/></inline-formula> for maps of <inline-formula><graphic file="1687-1812-2006-29470-i14.gif"/></inline-formula>-manifolds.</p> |
format |
article |
author |
Brown Robert F |
author_facet |
Brown Robert F |
author_sort |
Brown Robert F |
title |
Epsilon Nielsen fixed point theory |
title_short |
Epsilon Nielsen fixed point theory |
title_full |
Epsilon Nielsen fixed point theory |
title_fullStr |
Epsilon Nielsen fixed point theory |
title_full_unstemmed |
Epsilon Nielsen fixed point theory |
title_sort |
epsilon nielsen fixed point theory |
publisher |
SpringerOpen |
publishDate |
2006 |
url |
https://doaj.org/article/26cdabb7468f445fb36fa5f37e435c03 |
work_keys_str_mv |
AT brownrobertf epsilonnielsenfixedpointtheory |
_version_ |
1718396342809657344 |