Synthetic aperture radar image change detection based on convolutional‐curvelet neural network and partial graph‐cut
Abstract Synthetic aperture radar (SAR) images are widely applied in change detection tasks because of SAR's active imaging mechanism. However, SAR images suffer from speckle noise due to SAR reception coherence from distributed targets. This property of SAR increases the uncertainty of the ima...
Guardado en:
Autores principales: | Meng Jia, Cheng Zhang, Zhiqiang Zhao, Lei Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/26ea4a506efb4043a1926f8442b6fd55 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Feature fusion for inverse synthetic aperture radar image classification via learning shared hidden space
por: Wenhao Lin, et al.
Publicado: (2021) -
PotNet: Pothole detection for autonomous vehicle system using convolutional neural network
por: Deepak Kumar Dewangan, et al.
Publicado: (2021) -
Intrusion Detection System Based on Fast Hierarchical Deep Convolutional Neural Network
por: Robson V. Mendonca, et al.
Publicado: (2021) -
Environmental Strain on Beach Environments Retrieved and Monitored by Spaceborne Synthetic Aperture Radar
por: Valeria Di Biase, et al.
Publicado: (2021) -
Joint Trajectory Prediction of Multi-Linkage Robot Based on Graph Convolutional Network
por: Hu Wu, et al.
Publicado: (2020)