Synthetic aperture radar image change detection based on convolutional‐curvelet neural network and partial graph‐cut
Abstract Synthetic aperture radar (SAR) images are widely applied in change detection tasks because of SAR's active imaging mechanism. However, SAR images suffer from speckle noise due to SAR reception coherence from distributed targets. This property of SAR increases the uncertainty of the ima...
Enregistré dans:
Auteurs principaux: | Meng Jia, Cheng Zhang, Zhiqiang Zhao, Lei Wang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Wiley
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/26ea4a506efb4043a1926f8442b6fd55 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Feature fusion for inverse synthetic aperture radar image classification via learning shared hidden space
par: Wenhao Lin, et autres
Publié: (2021) -
PotNet: Pothole detection for autonomous vehicle system using convolutional neural network
par: Deepak Kumar Dewangan, et autres
Publié: (2021) -
Intrusion Detection System Based on Fast Hierarchical Deep Convolutional Neural Network
par: Robson V. Mendonca, et autres
Publié: (2021) -
Environmental Strain on Beach Environments Retrieved and Monitored by Spaceborne Synthetic Aperture Radar
par: Valeria Di Biase, et autres
Publié: (2021) -
Joint Trajectory Prediction of Multi-Linkage Robot Based on Graph Convolutional Network
par: Hu Wu, et autres
Publié: (2020)