The utility of clusters and a Hungarian clustering algorithm.
Implicit in the k-means algorithm is a way to assign a value, or utility, to a cluster of points. It works by taking the centroid of the points and the value of the cluster is the sum of distances from the centroid to each point in the cluster. The aim in this paper is to introduce an alternative wa...
Guardado en:
Autores principales: | Alfred Kume, Stephen G Walker |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/26f2d87c175d4debbe0dcd8fb0cf07ae |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A novel bidirectional clustering algorithm based on local density
por: Baicheng Lyu, et al.
Publicado: (2021) -
Clinical and biological clusters of sepsis patients using hierarchical clustering.
por: Grégory Papin, et al.
Publicado: (2021) -
Acute Pain Service in Hungarian hospitals.
por: Orsolya Lovasi, et al.
Publicado: (2021) -
The water supply association analysis method in Shenzhen based on kmeans clustering discretization and apriori algorithm.
por: Xin Liu, et al.
Publicado: (2021) -
Methods for dealing with unequal cluster sizes in cluster randomized trials: A scoping review.
por: Denghuang Zhan, et al.
Publicado: (2021)