SARS-CoV-2 rapid antigen testing in the healthcare sector: A clinical prediction model for identifying false negative results

Objectives: SARS-CoV-2 rapid antigen tests (RAT) provide fast identification of infectious patients when RT-PCR results are not immediately available. We aimed to develop a prediction model for identification of false negative (FN) RAT results. Methods: In this multicenter trial, patients with docum...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Johannes Leiner, MD, Vincent Pellissier, PhD, Anne Nitsche, PhD, Sebastian König, MD, Sven Hohenstein, PhD, Irit Nachtigall, MD, Gerhard Hindricks, MD, Christoph Kutschker, MD, Boris Rolinski, MD, Julian Gebauer, MD, Anja Prantz, MD, Joerg Schubert, MDPhD, Joerg Patzschke, MD, Andreas Bollmann, MDPhD, Martin Wolz, MD
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/2706f93753074671a11b974f47777c15
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2706f93753074671a11b974f47777c15
record_format dspace
spelling oai:doaj.org-article:2706f93753074671a11b974f47777c152021-11-30T04:14:08ZSARS-CoV-2 rapid antigen testing in the healthcare sector: A clinical prediction model for identifying false negative results1201-971210.1016/j.ijid.2021.09.008https://doaj.org/article/2706f93753074671a11b974f47777c152021-11-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1201971221007177https://doaj.org/toc/1201-9712Objectives: SARS-CoV-2 rapid antigen tests (RAT) provide fast identification of infectious patients when RT-PCR results are not immediately available. We aimed to develop a prediction model for identification of false negative (FN) RAT results. Methods: In this multicenter trial, patients with documented paired results of RAT and RT-PCR between October 1st 2020 and January 31st 2021 were retrospectively analyzed regarding clinical findings. Variables included demographics, laboratory values and specific symptoms. Three different models were evaluated using Bayesian logistic regression. Results: The initial dataset contained 4,076 patients. Overall sensitivity and specificity of RAT was 62.3% and 97.6%. 2,997 cases with negative RAT results (FN: 120; true negative: 2,877; reference: RT-PCR) underwent further evaluation after removal of cases with missing data. The best-performing model for predicting FN RAT results containing 10 variables yielded an area under the curve of 0.971. Sensitivity, specificity, PPV and NPV for 0.09 as cut-off value (probability for FN RAT) were 0.85, 0.99, 0.7 and 0.99. Conclusion: FN RAT results can be accurately identified through ten routinely available variables. Implementation of a prediction model in addition to RAT testing in clinical care can provide decision guidance for initiating appropriate hygiene measures and therefore helps avoiding nosocomial infections.Johannes Leiner, MDVincent Pellissier, PhDAnne Nitsche, PhDSebastian König, MDSven Hohenstein, PhDIrit Nachtigall, MDGerhard Hindricks, MDChristoph Kutschker, MDBoris Rolinski, MDJulian Gebauer, MDAnja Prantz, MDJoerg Schubert, MDPhDJoerg Patzschke, MDAndreas Bollmann, MDPhDMartin Wolz, MDElsevierarticleSARS-CoV-2COVID-19rapid antigen testfalse negativeprediction modelshealthcareInfectious and parasitic diseasesRC109-216ENInternational Journal of Infectious Diseases, Vol 112, Iss , Pp 117-123 (2021)
institution DOAJ
collection DOAJ
language EN
topic SARS-CoV-2
COVID-19
rapid antigen test
false negative
prediction models
healthcare
Infectious and parasitic diseases
RC109-216
spellingShingle SARS-CoV-2
COVID-19
rapid antigen test
false negative
prediction models
healthcare
Infectious and parasitic diseases
RC109-216
Johannes Leiner, MD
Vincent Pellissier, PhD
Anne Nitsche, PhD
Sebastian König, MD
Sven Hohenstein, PhD
Irit Nachtigall, MD
Gerhard Hindricks, MD
Christoph Kutschker, MD
Boris Rolinski, MD
Julian Gebauer, MD
Anja Prantz, MD
Joerg Schubert, MDPhD
Joerg Patzschke, MD
Andreas Bollmann, MDPhD
Martin Wolz, MD
SARS-CoV-2 rapid antigen testing in the healthcare sector: A clinical prediction model for identifying false negative results
description Objectives: SARS-CoV-2 rapid antigen tests (RAT) provide fast identification of infectious patients when RT-PCR results are not immediately available. We aimed to develop a prediction model for identification of false negative (FN) RAT results. Methods: In this multicenter trial, patients with documented paired results of RAT and RT-PCR between October 1st 2020 and January 31st 2021 were retrospectively analyzed regarding clinical findings. Variables included demographics, laboratory values and specific symptoms. Three different models were evaluated using Bayesian logistic regression. Results: The initial dataset contained 4,076 patients. Overall sensitivity and specificity of RAT was 62.3% and 97.6%. 2,997 cases with negative RAT results (FN: 120; true negative: 2,877; reference: RT-PCR) underwent further evaluation after removal of cases with missing data. The best-performing model for predicting FN RAT results containing 10 variables yielded an area under the curve of 0.971. Sensitivity, specificity, PPV and NPV for 0.09 as cut-off value (probability for FN RAT) were 0.85, 0.99, 0.7 and 0.99. Conclusion: FN RAT results can be accurately identified through ten routinely available variables. Implementation of a prediction model in addition to RAT testing in clinical care can provide decision guidance for initiating appropriate hygiene measures and therefore helps avoiding nosocomial infections.
format article
author Johannes Leiner, MD
Vincent Pellissier, PhD
Anne Nitsche, PhD
Sebastian König, MD
Sven Hohenstein, PhD
Irit Nachtigall, MD
Gerhard Hindricks, MD
Christoph Kutschker, MD
Boris Rolinski, MD
Julian Gebauer, MD
Anja Prantz, MD
Joerg Schubert, MDPhD
Joerg Patzschke, MD
Andreas Bollmann, MDPhD
Martin Wolz, MD
author_facet Johannes Leiner, MD
Vincent Pellissier, PhD
Anne Nitsche, PhD
Sebastian König, MD
Sven Hohenstein, PhD
Irit Nachtigall, MD
Gerhard Hindricks, MD
Christoph Kutschker, MD
Boris Rolinski, MD
Julian Gebauer, MD
Anja Prantz, MD
Joerg Schubert, MDPhD
Joerg Patzschke, MD
Andreas Bollmann, MDPhD
Martin Wolz, MD
author_sort Johannes Leiner, MD
title SARS-CoV-2 rapid antigen testing in the healthcare sector: A clinical prediction model for identifying false negative results
title_short SARS-CoV-2 rapid antigen testing in the healthcare sector: A clinical prediction model for identifying false negative results
title_full SARS-CoV-2 rapid antigen testing in the healthcare sector: A clinical prediction model for identifying false negative results
title_fullStr SARS-CoV-2 rapid antigen testing in the healthcare sector: A clinical prediction model for identifying false negative results
title_full_unstemmed SARS-CoV-2 rapid antigen testing in the healthcare sector: A clinical prediction model for identifying false negative results
title_sort sars-cov-2 rapid antigen testing in the healthcare sector: a clinical prediction model for identifying false negative results
publisher Elsevier
publishDate 2021
url https://doaj.org/article/2706f93753074671a11b974f47777c15
work_keys_str_mv AT johannesleinermd sarscov2rapidantigentestinginthehealthcaresectoraclinicalpredictionmodelforidentifyingfalsenegativeresults
AT vincentpellissierphd sarscov2rapidantigentestinginthehealthcaresectoraclinicalpredictionmodelforidentifyingfalsenegativeresults
AT annenitschephd sarscov2rapidantigentestinginthehealthcaresectoraclinicalpredictionmodelforidentifyingfalsenegativeresults
AT sebastiankonigmd sarscov2rapidantigentestinginthehealthcaresectoraclinicalpredictionmodelforidentifyingfalsenegativeresults
AT svenhohensteinphd sarscov2rapidantigentestinginthehealthcaresectoraclinicalpredictionmodelforidentifyingfalsenegativeresults
AT iritnachtigallmd sarscov2rapidantigentestinginthehealthcaresectoraclinicalpredictionmodelforidentifyingfalsenegativeresults
AT gerhardhindricksmd sarscov2rapidantigentestinginthehealthcaresectoraclinicalpredictionmodelforidentifyingfalsenegativeresults
AT christophkutschkermd sarscov2rapidantigentestinginthehealthcaresectoraclinicalpredictionmodelforidentifyingfalsenegativeresults
AT borisrolinskimd sarscov2rapidantigentestinginthehealthcaresectoraclinicalpredictionmodelforidentifyingfalsenegativeresults
AT juliangebauermd sarscov2rapidantigentestinginthehealthcaresectoraclinicalpredictionmodelforidentifyingfalsenegativeresults
AT anjaprantzmd sarscov2rapidantigentestinginthehealthcaresectoraclinicalpredictionmodelforidentifyingfalsenegativeresults
AT joergschubertmdphd sarscov2rapidantigentestinginthehealthcaresectoraclinicalpredictionmodelforidentifyingfalsenegativeresults
AT joergpatzschkemd sarscov2rapidantigentestinginthehealthcaresectoraclinicalpredictionmodelforidentifyingfalsenegativeresults
AT andreasbollmannmdphd sarscov2rapidantigentestinginthehealthcaresectoraclinicalpredictionmodelforidentifyingfalsenegativeresults
AT martinwolzmd sarscov2rapidantigentestinginthehealthcaresectoraclinicalpredictionmodelforidentifyingfalsenegativeresults
_version_ 1718406792508080128