CN-Motifs Perceptive Graph Neural Networks
Graph neural networks (GNNs) have been the dominant approaches for graph representation learning. However, most GNNs are applied to homophily graphs and perform poorly on heterophily graphs. Meanwhile, these GNNs fail to directly capture long-range dependencies and complex interactions between 1-hop...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/270e379a7473422bb382ef7305a6eb05 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:270e379a7473422bb382ef7305a6eb05 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:270e379a7473422bb382ef7305a6eb052021-11-17T00:01:04ZCN-Motifs Perceptive Graph Neural Networks2169-353610.1109/ACCESS.2021.3126417https://doaj.org/article/270e379a7473422bb382ef7305a6eb052021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9606682/https://doaj.org/toc/2169-3536Graph neural networks (GNNs) have been the dominant approaches for graph representation learning. However, most GNNs are applied to homophily graphs and perform poorly on heterophily graphs. Meanwhile, these GNNs fail to directly capture long-range dependencies and complex interactions between 1-hop neighbors when generating node representations by iteratively aggregating directly connected neighbors. In addition, structural patterns, such as motifs which have been established as building blocks for graph structure, contain rich topological and semantical information and are worth studying further. In this paper, we introduce the common-neighbors based motifs, which we called CN-motifs, to generalize and enrich the definition of structural patterns. We group the 1-hop neighbors and construct a high-order graph according to CN-motifs, and propose CN-motifs Perceptive Graph Neural Networks (CNMPGNN), a novel framework which can effectively resolve problems mentioned above. Notably, by making full use of structural patterns, our model achieves the state-of-the-art results on several homophily and heterophily datasets.Fan ZhangTian-Ming BuIEEEarticleCommon neighborsgraph neural networksheterophily graphmotifsstructural patternsElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 151285-151293 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Common neighbors graph neural networks heterophily graph motifs structural patterns Electrical engineering. Electronics. Nuclear engineering TK1-9971 |
spellingShingle |
Common neighbors graph neural networks heterophily graph motifs structural patterns Electrical engineering. Electronics. Nuclear engineering TK1-9971 Fan Zhang Tian-Ming Bu CN-Motifs Perceptive Graph Neural Networks |
description |
Graph neural networks (GNNs) have been the dominant approaches for graph representation learning. However, most GNNs are applied to homophily graphs and perform poorly on heterophily graphs. Meanwhile, these GNNs fail to directly capture long-range dependencies and complex interactions between 1-hop neighbors when generating node representations by iteratively aggregating directly connected neighbors. In addition, structural patterns, such as motifs which have been established as building blocks for graph structure, contain rich topological and semantical information and are worth studying further. In this paper, we introduce the common-neighbors based motifs, which we called CN-motifs, to generalize and enrich the definition of structural patterns. We group the 1-hop neighbors and construct a high-order graph according to CN-motifs, and propose CN-motifs Perceptive Graph Neural Networks (CNMPGNN), a novel framework which can effectively resolve problems mentioned above. Notably, by making full use of structural patterns, our model achieves the state-of-the-art results on several homophily and heterophily datasets. |
format |
article |
author |
Fan Zhang Tian-Ming Bu |
author_facet |
Fan Zhang Tian-Ming Bu |
author_sort |
Fan Zhang |
title |
CN-Motifs Perceptive Graph Neural Networks |
title_short |
CN-Motifs Perceptive Graph Neural Networks |
title_full |
CN-Motifs Perceptive Graph Neural Networks |
title_fullStr |
CN-Motifs Perceptive Graph Neural Networks |
title_full_unstemmed |
CN-Motifs Perceptive Graph Neural Networks |
title_sort |
cn-motifs perceptive graph neural networks |
publisher |
IEEE |
publishDate |
2021 |
url |
https://doaj.org/article/270e379a7473422bb382ef7305a6eb05 |
work_keys_str_mv |
AT fanzhang cnmotifsperceptivegraphneuralnetworks AT tianmingbu cnmotifsperceptivegraphneuralnetworks |
_version_ |
1718426036666892288 |