Crop yield prediction integrating genotype and weather variables using deep learning.
Accurate prediction of crop yield supported by scientific and domain-relevant insights, is useful to improve agricultural breeding, provide monitoring across diverse climatic conditions and thereby protect against climatic challenges to crop production. We used performance records from Uniform Soybe...
Guardado en:
Autores principales: | Johnathon Shook, Tryambak Gangopadhyay, Linjiang Wu, Baskar Ganapathysubramanian, Soumik Sarkar, Asheesh K Singh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2725d1c2b5ff4022aef0b56c9f7c68bc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Climate variability and crop yields synergies in Tanzania’s semiarid agroecological zone
por: Msafiri Y. Mkonda, et al.
Publicado: (2018) -
Climate-Driven Crop Yield and Yield Variability and Climate Change Impacts on the U.S. Great Plains Agricultural Production
por: Meetpal S. Kukal, et al.
Publicado: (2018) -
Crop response to El Niño-Southern Oscillation related weather variation to help farmers manage their crops
por: Ross Chapman, et al.
Publicado: (2021) -
Mathematical Modelling in Crop Production to Predict Crop Yields
por: Marzhan Anuarbekovna Sadenova, et al.
Publicado: (2021) -
Integration of a Crop Growth Model and Deep Learning Methods to Improve Satellite-Based Yield Estimation of Winter Wheat in Henan Province, China
por: Yi Xie, et al.
Publicado: (2021)