Crop yield prediction integrating genotype and weather variables using deep learning.
Accurate prediction of crop yield supported by scientific and domain-relevant insights, is useful to improve agricultural breeding, provide monitoring across diverse climatic conditions and thereby protect against climatic challenges to crop production. We used performance records from Uniform Soybe...
Enregistré dans:
Auteurs principaux: | Johnathon Shook, Tryambak Gangopadhyay, Linjiang Wu, Baskar Ganapathysubramanian, Soumik Sarkar, Asheesh K Singh |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/2725d1c2b5ff4022aef0b56c9f7c68bc |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Climate variability and crop yields synergies in Tanzania’s semiarid agroecological zone
par: Msafiri Y. Mkonda, et autres
Publié: (2018) -
Climate-Driven Crop Yield and Yield Variability and Climate Change Impacts on the U.S. Great Plains Agricultural Production
par: Meetpal S. Kukal, et autres
Publié: (2018) -
Crop response to El Niño-Southern Oscillation related weather variation to help farmers manage their crops
par: Ross Chapman, et autres
Publié: (2021) -
Mathematical Modelling in Crop Production to Predict Crop Yields
par: Marzhan Anuarbekovna Sadenova, et autres
Publié: (2021) -
Integration of a Crop Growth Model and Deep Learning Methods to Improve Satellite-Based Yield Estimation of Winter Wheat in Henan Province, China
par: Yi Xie, et autres
Publié: (2021)