Fractional calculus, zeta functions and Shannon entropy

This paper deals with the fractional calculus of zeta functions. In particular, the study is focused on the Hurwitz ζ\zeta function. All the results are based on the complex generalization of the Grünwald-Letnikov fractional derivative. We state and prove the functional equation together with an in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Guariglia Emanuel
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/273f1b236fe041dc9df29eef9db5a373
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This paper deals with the fractional calculus of zeta functions. In particular, the study is focused on the Hurwitz ζ\zeta function. All the results are based on the complex generalization of the Grünwald-Letnikov fractional derivative. We state and prove the functional equation together with an integral representation by Bernoulli numbers. Moreover, we treat an application in terms of Shannon entropy.