Fractional calculus, zeta functions and Shannon entropy

This paper deals with the fractional calculus of zeta functions. In particular, the study is focused on the Hurwitz ζ\zeta function. All the results are based on the complex generalization of the Grünwald-Letnikov fractional derivative. We state and prove the functional equation together with an in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Guariglia Emanuel
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/273f1b236fe041dc9df29eef9db5a373
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:273f1b236fe041dc9df29eef9db5a373
record_format dspace
spelling oai:doaj.org-article:273f1b236fe041dc9df29eef9db5a3732021-12-05T14:10:52ZFractional calculus, zeta functions and Shannon entropy2391-545510.1515/math-2021-0010https://doaj.org/article/273f1b236fe041dc9df29eef9db5a3732021-04-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0010https://doaj.org/toc/2391-5455This paper deals with the fractional calculus of zeta functions. In particular, the study is focused on the Hurwitz ζ\zeta function. All the results are based on the complex generalization of the Grünwald-Letnikov fractional derivative. We state and prove the functional equation together with an integral representation by Bernoulli numbers. Moreover, we treat an application in terms of Shannon entropy.Guariglia EmanuelDe Gruyterarticlehurwitz ζ functionfractional derivativefunctional equationbernoulli numbersshannon entropy11m3526a3311b6834k3749k99MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 87-100 (2021)
institution DOAJ
collection DOAJ
language EN
topic hurwitz ζ function
fractional derivative
functional equation
bernoulli numbers
shannon entropy
11m35
26a33
11b68
34k37
49k99
Mathematics
QA1-939
spellingShingle hurwitz ζ function
fractional derivative
functional equation
bernoulli numbers
shannon entropy
11m35
26a33
11b68
34k37
49k99
Mathematics
QA1-939
Guariglia Emanuel
Fractional calculus, zeta functions and Shannon entropy
description This paper deals with the fractional calculus of zeta functions. In particular, the study is focused on the Hurwitz ζ\zeta function. All the results are based on the complex generalization of the Grünwald-Letnikov fractional derivative. We state and prove the functional equation together with an integral representation by Bernoulli numbers. Moreover, we treat an application in terms of Shannon entropy.
format article
author Guariglia Emanuel
author_facet Guariglia Emanuel
author_sort Guariglia Emanuel
title Fractional calculus, zeta functions and Shannon entropy
title_short Fractional calculus, zeta functions and Shannon entropy
title_full Fractional calculus, zeta functions and Shannon entropy
title_fullStr Fractional calculus, zeta functions and Shannon entropy
title_full_unstemmed Fractional calculus, zeta functions and Shannon entropy
title_sort fractional calculus, zeta functions and shannon entropy
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/273f1b236fe041dc9df29eef9db5a373
work_keys_str_mv AT guarigliaemanuel fractionalcalculuszetafunctionsandshannonentropy
_version_ 1718371641217515520