Fractional calculus, zeta functions and Shannon entropy
This paper deals with the fractional calculus of zeta functions. In particular, the study is focused on the Hurwitz ζ\zeta function. All the results are based on the complex generalization of the Grünwald-Letnikov fractional derivative. We state and prove the functional equation together with an in...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/273f1b236fe041dc9df29eef9db5a373 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:273f1b236fe041dc9df29eef9db5a373 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:273f1b236fe041dc9df29eef9db5a3732021-12-05T14:10:52ZFractional calculus, zeta functions and Shannon entropy2391-545510.1515/math-2021-0010https://doaj.org/article/273f1b236fe041dc9df29eef9db5a3732021-04-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0010https://doaj.org/toc/2391-5455This paper deals with the fractional calculus of zeta functions. In particular, the study is focused on the Hurwitz ζ\zeta function. All the results are based on the complex generalization of the Grünwald-Letnikov fractional derivative. We state and prove the functional equation together with an integral representation by Bernoulli numbers. Moreover, we treat an application in terms of Shannon entropy.Guariglia EmanuelDe Gruyterarticlehurwitz ζ functionfractional derivativefunctional equationbernoulli numbersshannon entropy11m3526a3311b6834k3749k99MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 87-100 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
hurwitz ζ function fractional derivative functional equation bernoulli numbers shannon entropy 11m35 26a33 11b68 34k37 49k99 Mathematics QA1-939 |
spellingShingle |
hurwitz ζ function fractional derivative functional equation bernoulli numbers shannon entropy 11m35 26a33 11b68 34k37 49k99 Mathematics QA1-939 Guariglia Emanuel Fractional calculus, zeta functions and Shannon entropy |
description |
This paper deals with the fractional calculus of zeta functions. In particular, the study is focused on the Hurwitz ζ\zeta function. All the results are based on the complex generalization of the Grünwald-Letnikov fractional derivative. We state and prove the functional equation together with an integral representation by Bernoulli numbers. Moreover, we treat an application in terms of Shannon entropy. |
format |
article |
author |
Guariglia Emanuel |
author_facet |
Guariglia Emanuel |
author_sort |
Guariglia Emanuel |
title |
Fractional calculus, zeta functions and Shannon entropy |
title_short |
Fractional calculus, zeta functions and Shannon entropy |
title_full |
Fractional calculus, zeta functions and Shannon entropy |
title_fullStr |
Fractional calculus, zeta functions and Shannon entropy |
title_full_unstemmed |
Fractional calculus, zeta functions and Shannon entropy |
title_sort |
fractional calculus, zeta functions and shannon entropy |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/273f1b236fe041dc9df29eef9db5a373 |
work_keys_str_mv |
AT guarigliaemanuel fractionalcalculuszetafunctionsandshannonentropy |
_version_ |
1718371641217515520 |