Complete Colombian Caribbean loggerhead turtle mitochondrial genome: tRNA structure analysis and revisited marine turtle phylogeny

The loggerhead marine turtle, Caretta caretta, is a widely distributed and endangered species that is facing critical population decline, especially in Colombian Caribbean rookeries. Mitochondrial DNA sequence data are of great importance for the description, monitoring, and phylogenetic analyses...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Javier Hernández-Fernández, Katherin Otálora
Formato: article
Lenguaje:EN
ES
Publicado: Pontificia Universidad Javeriana 2018
Materias:
Acceso en línea:https://doaj.org/article/27438ab2c1fa40d6a987683930b9c1e3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The loggerhead marine turtle, Caretta caretta, is a widely distributed and endangered species that is facing critical population decline, especially in Colombian Caribbean rookeries. Mitochondrial DNA sequence data are of great importance for the description, monitoring, and phylogenetic analyses of migratory turtle populations. In this study, the first full mitochondrial genome of a loggerhead turtle nesting in the Colombian Caribbean was sequenced and analyzed. This mitochondrial genome consists of 16 362 bp with a nucleotide composition of T: 25.7 %, C: 27 %, A: 35 % and G: 12 %. Sequence annotation of the assembled molecule revealed an organization and number of coding and functional units as reported for other vertebrate mitogenomes. This Colombian loggerhead turtle (Cc-AO-C) showed a novel D-Loop haplotype consisting of thirteen new variable sites, sharing 99.2 % sequence identity with the previously reported Caribbean loggerhead CC-A1 D-Loop haplotype. All 13 protein-coding genes in the Cc-AO-C mitogenome were compared and aligned with those from four other loggerhead turtles from different locations (Florida, Greece, Peru, and Hawaii). Eleven of these genes presented moderate genetic diversity levels, and genes COII and ND5 showed the highest diversity, with average numbers of pair-wise differences of 16.6 and 25, respectively. In addition, the first approach related to t-RNAs 2D and 3D structure analysis in this mitogenome was conducted, leading to observed unique features in two tRNAs (tRNATrp and tRNALeu). The marine turtle phylogeny was revisited with the newly generated data. The entire mitogenome provided phylogenetically informative data, as well as individual genes ND5, ND4, and 16S. In conclusion, this study highlights the importance of complete mitogenome data in revealing gene flow processes in natural loggerhead turtle populations, as well as in understanding the evolutionary history of marine turtles.