Prediction of tau accumulation in prodromal Alzheimer’s disease using an ensemble machine learning approach
Abstract We developed machine learning (ML) algorithms to predict abnormal tau accumulation among patients with prodromal AD. We recruited 64 patients with prodromal AD using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Supervised ML approaches based on the random forest (RF) and...
Guardado en:
Autores principales: | Jaeho Kim, Yuhyun Park, Seongbeom Park, Hyemin Jang, Hee Jin Kim, Duk L. Na, Hyejoo Lee, Sang Won Seo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/274e88d54dd847b39ba40d3d0714f6d1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Functional brain architecture is associated with the rate of tau accumulation in Alzheimer’s disease
por: Nicolai Franzmeier, et al.
Publicado: (2020) -
Disease progression modeling of Alzheimer’s disease according to education level
por: Ko Woon Kim, et al.
Publicado: (2020) -
Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach
por: Jun Pyo Kim, et al.
Publicado: (2021) -
Combination of automated brain volumetry on MRI and quantitative tau deposition on THK-5351 PET to support diagnosis of Alzheimer’s disease
por: Minjae Kim, et al.
Publicado: (2021) -
Effect of education on functional network edge efficiency in Alzheimer’s disease
por: Yeshin Kim, et al.
Publicado: (2021)