Prediction of tau accumulation in prodromal Alzheimer’s disease using an ensemble machine learning approach
Abstract We developed machine learning (ML) algorithms to predict abnormal tau accumulation among patients with prodromal AD. We recruited 64 patients with prodromal AD using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Supervised ML approaches based on the random forest (RF) and...
Enregistré dans:
Auteurs principaux: | Jaeho Kim, Yuhyun Park, Seongbeom Park, Hyemin Jang, Hee Jin Kim, Duk L. Na, Hyejoo Lee, Sang Won Seo |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/274e88d54dd847b39ba40d3d0714f6d1 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Functional brain architecture is associated with the rate of tau accumulation in Alzheimer’s disease
par: Nicolai Franzmeier, et autres
Publié: (2020) -
Disease progression modeling of Alzheimer’s disease according to education level
par: Ko Woon Kim, et autres
Publié: (2020) -
Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach
par: Jun Pyo Kim, et autres
Publié: (2021) -
Combination of automated brain volumetry on MRI and quantitative tau deposition on THK-5351 PET to support diagnosis of Alzheimer’s disease
par: Minjae Kim, et autres
Publié: (2021) -
Effect of education on functional network edge efficiency in Alzheimer’s disease
par: Yeshin Kim, et autres
Publié: (2021)