Emergence of a Plasmid-Encoded Resistance-Nodulation-Division Efflux Pump Conferring Resistance to Multiple Drugs, Including Tigecycline, in <named-content content-type="genus-species">Klebsiella pneumoniae</named-content>
ABSTRACT Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria. However, the cotransfer of large gene clusters encoding RND-type pumps from the chromosome to a plasmid appears infrequent, and no pla...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/275a9babc0f443eb9dcb6b4e5a071b96 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:275a9babc0f443eb9dcb6b4e5a071b96 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:275a9babc0f443eb9dcb6b4e5a071b962021-11-15T15:57:02ZEmergence of a Plasmid-Encoded Resistance-Nodulation-Division Efflux Pump Conferring Resistance to Multiple Drugs, Including Tigecycline, in <named-content content-type="genus-species">Klebsiella pneumoniae</named-content>10.1128/mBio.02930-192150-7511https://doaj.org/article/275a9babc0f443eb9dcb6b4e5a071b962020-04-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.02930-19https://doaj.org/toc/2150-7511ABSTRACT Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria. However, the cotransfer of large gene clusters encoding RND-type pumps from the chromosome to a plasmid appears infrequent, and no plasmid-mediated RND efflux pump gene cluster has yet been found to confer resistance to tigecycline. Here, we identified a novel RND efflux pump gene cluster, designated tmexCD1-toprJ1, on plasmids from five pandrug-resistant Klebsiella pneumoniae isolates of animal origin. TMexCD1-TOprJ1 increased (by 4- to 32-fold) the MICs of tetracyclines (including tigecycline and eravacycline), quinolones, cephalosporins, and aminoglycosides for K. pneumoniae, Escherichia coli, and Salmonella. TMexCD1-TOprJ1 is closely related (64.5% to 77.8% amino acid identity) to the MexCD-OprJ efflux pump encoded on the chromosome of Pseudomonas aeruginosa. In an IncFIA plasmid, pHNAH8I, the tmexCD1-toprJ1 gene cluster lies adjacent to two genes encoding site-specific integrases, which may have been responsible for its acquisition. Expression of TMexCD1-TOprJ1 in E. coli resulted in increased tigecycline efflux and in K. pneumoniae negated the efficacy of tigecycline in an in vivo infection model. Expression of TMexCD1-TOprJ1 reduced the growth of E. coli and Salmonella but not K. pneumoniae. tmexCD1-toprJ1-positive Enterobacteriaceae isolates were rare in humans (0.08%) but more common in chicken fecal (14.3%) and retail meat (3.4%) samples. Plasmid-borne tmexCD1-toprJ1-like gene clusters were identified in sequences in GenBank from Enterobacteriaceae and Pseudomonas strains from multiple continents. The possibility of further global dissemination of the tmexCD1-toprJ1 gene cluster and its analogues in Enterobacteriaceae via plasmids may be an important consideration for public health planning. IMPORTANCE In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant Enterobacteriaceae, the most problematic pathogens in human clinical settings—especially carbapenem-resistant K. pneumoniae. Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among K. pneumoniae isolates from food animals. tmexCD1-toprJ1 appears to have originated from the chromosome of a Pseudomonas species and may have been transferred onto plasmids by adjacent site-specific integrases. Although tmexCD1-toprJ1 still appears to be rare in human clinical isolates, considering the transferability of the tmexCD1-toprJ1 gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a “One Health” perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this.Luchao LvMiao WanChengzhen WangXun GaoQiwen YangSally R. PartridgeYang WangZhiyong ZongYohei DoiJianzhong ShenPeiyao JiaQianhua SongQianhui ZhangJun YangXianhui HuangMinggui WangJian-Hua LiuAmerican Society for MicrobiologyarticleEnterobacteriaceaeantimicrobial agentsefflux pumpsmechanisms of resistancemultidrug resistanceplasmid-mediated resistanceMicrobiologyQR1-502ENmBio, Vol 11, Iss 2 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Enterobacteriaceae antimicrobial agents efflux pumps mechanisms of resistance multidrug resistance plasmid-mediated resistance Microbiology QR1-502 |
spellingShingle |
Enterobacteriaceae antimicrobial agents efflux pumps mechanisms of resistance multidrug resistance plasmid-mediated resistance Microbiology QR1-502 Luchao Lv Miao Wan Chengzhen Wang Xun Gao Qiwen Yang Sally R. Partridge Yang Wang Zhiyong Zong Yohei Doi Jianzhong Shen Peiyao Jia Qianhua Song Qianhui Zhang Jun Yang Xianhui Huang Minggui Wang Jian-Hua Liu Emergence of a Plasmid-Encoded Resistance-Nodulation-Division Efflux Pump Conferring Resistance to Multiple Drugs, Including Tigecycline, in <named-content content-type="genus-species">Klebsiella pneumoniae</named-content> |
description |
ABSTRACT Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria. However, the cotransfer of large gene clusters encoding RND-type pumps from the chromosome to a plasmid appears infrequent, and no plasmid-mediated RND efflux pump gene cluster has yet been found to confer resistance to tigecycline. Here, we identified a novel RND efflux pump gene cluster, designated tmexCD1-toprJ1, on plasmids from five pandrug-resistant Klebsiella pneumoniae isolates of animal origin. TMexCD1-TOprJ1 increased (by 4- to 32-fold) the MICs of tetracyclines (including tigecycline and eravacycline), quinolones, cephalosporins, and aminoglycosides for K. pneumoniae, Escherichia coli, and Salmonella. TMexCD1-TOprJ1 is closely related (64.5% to 77.8% amino acid identity) to the MexCD-OprJ efflux pump encoded on the chromosome of Pseudomonas aeruginosa. In an IncFIA plasmid, pHNAH8I, the tmexCD1-toprJ1 gene cluster lies adjacent to two genes encoding site-specific integrases, which may have been responsible for its acquisition. Expression of TMexCD1-TOprJ1 in E. coli resulted in increased tigecycline efflux and in K. pneumoniae negated the efficacy of tigecycline in an in vivo infection model. Expression of TMexCD1-TOprJ1 reduced the growth of E. coli and Salmonella but not K. pneumoniae. tmexCD1-toprJ1-positive Enterobacteriaceae isolates were rare in humans (0.08%) but more common in chicken fecal (14.3%) and retail meat (3.4%) samples. Plasmid-borne tmexCD1-toprJ1-like gene clusters were identified in sequences in GenBank from Enterobacteriaceae and Pseudomonas strains from multiple continents. The possibility of further global dissemination of the tmexCD1-toprJ1 gene cluster and its analogues in Enterobacteriaceae via plasmids may be an important consideration for public health planning. IMPORTANCE In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant Enterobacteriaceae, the most problematic pathogens in human clinical settings—especially carbapenem-resistant K. pneumoniae. Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among K. pneumoniae isolates from food animals. tmexCD1-toprJ1 appears to have originated from the chromosome of a Pseudomonas species and may have been transferred onto plasmids by adjacent site-specific integrases. Although tmexCD1-toprJ1 still appears to be rare in human clinical isolates, considering the transferability of the tmexCD1-toprJ1 gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a “One Health” perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this. |
format |
article |
author |
Luchao Lv Miao Wan Chengzhen Wang Xun Gao Qiwen Yang Sally R. Partridge Yang Wang Zhiyong Zong Yohei Doi Jianzhong Shen Peiyao Jia Qianhua Song Qianhui Zhang Jun Yang Xianhui Huang Minggui Wang Jian-Hua Liu |
author_facet |
Luchao Lv Miao Wan Chengzhen Wang Xun Gao Qiwen Yang Sally R. Partridge Yang Wang Zhiyong Zong Yohei Doi Jianzhong Shen Peiyao Jia Qianhua Song Qianhui Zhang Jun Yang Xianhui Huang Minggui Wang Jian-Hua Liu |
author_sort |
Luchao Lv |
title |
Emergence of a Plasmid-Encoded Resistance-Nodulation-Division Efflux Pump Conferring Resistance to Multiple Drugs, Including Tigecycline, in <named-content content-type="genus-species">Klebsiella pneumoniae</named-content> |
title_short |
Emergence of a Plasmid-Encoded Resistance-Nodulation-Division Efflux Pump Conferring Resistance to Multiple Drugs, Including Tigecycline, in <named-content content-type="genus-species">Klebsiella pneumoniae</named-content> |
title_full |
Emergence of a Plasmid-Encoded Resistance-Nodulation-Division Efflux Pump Conferring Resistance to Multiple Drugs, Including Tigecycline, in <named-content content-type="genus-species">Klebsiella pneumoniae</named-content> |
title_fullStr |
Emergence of a Plasmid-Encoded Resistance-Nodulation-Division Efflux Pump Conferring Resistance to Multiple Drugs, Including Tigecycline, in <named-content content-type="genus-species">Klebsiella pneumoniae</named-content> |
title_full_unstemmed |
Emergence of a Plasmid-Encoded Resistance-Nodulation-Division Efflux Pump Conferring Resistance to Multiple Drugs, Including Tigecycline, in <named-content content-type="genus-species">Klebsiella pneumoniae</named-content> |
title_sort |
emergence of a plasmid-encoded resistance-nodulation-division efflux pump conferring resistance to multiple drugs, including tigecycline, in <named-content content-type="genus-species">klebsiella pneumoniae</named-content> |
publisher |
American Society for Microbiology |
publishDate |
2020 |
url |
https://doaj.org/article/275a9babc0f443eb9dcb6b4e5a071b96 |
work_keys_str_mv |
AT luchaolv emergenceofaplasmidencodedresistancenodulationdivisioneffluxpumpconferringresistancetomultipledrugsincludingtigecyclineinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent AT miaowan emergenceofaplasmidencodedresistancenodulationdivisioneffluxpumpconferringresistancetomultipledrugsincludingtigecyclineinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent AT chengzhenwang emergenceofaplasmidencodedresistancenodulationdivisioneffluxpumpconferringresistancetomultipledrugsincludingtigecyclineinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent AT xungao emergenceofaplasmidencodedresistancenodulationdivisioneffluxpumpconferringresistancetomultipledrugsincludingtigecyclineinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent AT qiwenyang emergenceofaplasmidencodedresistancenodulationdivisioneffluxpumpconferringresistancetomultipledrugsincludingtigecyclineinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent AT sallyrpartridge emergenceofaplasmidencodedresistancenodulationdivisioneffluxpumpconferringresistancetomultipledrugsincludingtigecyclineinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent AT yangwang emergenceofaplasmidencodedresistancenodulationdivisioneffluxpumpconferringresistancetomultipledrugsincludingtigecyclineinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent AT zhiyongzong emergenceofaplasmidencodedresistancenodulationdivisioneffluxpumpconferringresistancetomultipledrugsincludingtigecyclineinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent AT yoheidoi emergenceofaplasmidencodedresistancenodulationdivisioneffluxpumpconferringresistancetomultipledrugsincludingtigecyclineinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent AT jianzhongshen emergenceofaplasmidencodedresistancenodulationdivisioneffluxpumpconferringresistancetomultipledrugsincludingtigecyclineinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent AT peiyaojia emergenceofaplasmidencodedresistancenodulationdivisioneffluxpumpconferringresistancetomultipledrugsincludingtigecyclineinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent AT qianhuasong emergenceofaplasmidencodedresistancenodulationdivisioneffluxpumpconferringresistancetomultipledrugsincludingtigecyclineinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent AT qianhuizhang emergenceofaplasmidencodedresistancenodulationdivisioneffluxpumpconferringresistancetomultipledrugsincludingtigecyclineinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent AT junyang emergenceofaplasmidencodedresistancenodulationdivisioneffluxpumpconferringresistancetomultipledrugsincludingtigecyclineinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent AT xianhuihuang emergenceofaplasmidencodedresistancenodulationdivisioneffluxpumpconferringresistancetomultipledrugsincludingtigecyclineinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent AT mingguiwang emergenceofaplasmidencodedresistancenodulationdivisioneffluxpumpconferringresistancetomultipledrugsincludingtigecyclineinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent AT jianhualiu emergenceofaplasmidencodedresistancenodulationdivisioneffluxpumpconferringresistancetomultipledrugsincludingtigecyclineinnamedcontentcontenttypegenusspeciesklebsiellapneumoniaenamedcontent |
_version_ |
1718427019078795264 |