Improving outliers detection in data streams using LiCS and voting
Detecting outliers in real-time is increasingly important for many real-world applications such as detecting abnormal heart activity, intrusions to systems, spams or abnormal credit card transactions. However, detecting outliers in data streams rises many challenges such as high-dimensionality, dyna...
Enregistré dans:
Auteurs principaux: | Fatima-Zahra Benjelloun, Ahmed Oussous, Amine Bennani, Samir Belfkih, Ayoub Ait Lahcen |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/27690865aa2042bcb85cf54db30f0f6b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Outliers detection and treatment: a review.
par: Denis Cousineau, et autres
Publié: (2010) -
Anomaly Detection on Data Streams for Smart Agriculture
par: Juliet Chebet Moso, et autres
Publié: (2021) -
Data Stream Mining Between Classical and Modern Applications: A Review
par: Ammar Thaher Yaseen Al Abd Alazeez Al Abd Alazeez
Publié: (2021) -
Demand-Driven Data Acquisition for Large Scale Fleets
par: Philip Matesanz, et autres
Publié: (2021) -
A hybrid machine learning method for increasing the performance of network intrusion detection systems
par: Achmad Akbar Megantara, et autres
Publié: (2021)