The Liu-Type Estimator Based on Parameter Optimization and its Application in SBAS Deformation Model Inversion
A situation in which an image is combined with multiple images to form interferometric pairs is often observed in small baseline subset-interferometric synthetic aperture radar (SBAS-InSAR) deformation inversion, and this situation leads to a near linear correlation between the column vectors of the...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/278f96854c3943cd9a3b7f14ab31d04e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:278f96854c3943cd9a3b7f14ab31d04e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:278f96854c3943cd9a3b7f14ab31d04e2021-11-19T00:05:07ZThe Liu-Type Estimator Based on Parameter Optimization and its Application in SBAS Deformation Model Inversion2169-353610.1109/ACCESS.2020.3046676https://doaj.org/article/278f96854c3943cd9a3b7f14ab31d04e2021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9302571/https://doaj.org/toc/2169-3536A situation in which an image is combined with multiple images to form interferometric pairs is often observed in small baseline subset-interferometric synthetic aperture radar (SBAS-InSAR) deformation inversion, and this situation leads to a near linear correlation between the column vectors of the model design matrix. The Liu-type estimator introduces the parameters <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula> into the normal equation to reduce the condition number of the design matrix and to improve the fitting properties. As the parameter <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> is mainly used to reduce ill-posed problems of the design matrix, the value of <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> is not limited. However, the value of <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>, as determined by existing methods, is usually too large or too small. Since the calculation of the mean square error involves true values, the parameter <inline-formula> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula> is often affected by errors in the estimation results, which leads to the decreased accuracy of Liu-type estimation results. To determine the optimal value of <inline-formula> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula>, an iterative Liu-type estimator is proposed to eliminate errors. Then, the <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>-curve optimization method and iterative Liu-type estimator are combined to achieve the optimal <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>. The reliability and accuracy of the methods are analyzed through SBAS-InSAR deformation experiments. The experimental results show that after using the <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>-curve method and an iterative operation to optimize <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula>, the accuracy of the Liu-type estimator based on parameter optimization is clearly improved compared with that of the ridge estimator and the Liu-type estimator.Min ZhaiGuolin Liu QiuxiangtaoKe WangYang ChenGuangyong PanMingzhen XinIEEEarticleLiu-type estimatoriterative methodL-curveill-posed problembiased estimatorleast squares estimatorElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 1076-1086 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Liu-type estimator iterative method L-curve ill-posed problem biased estimator least squares estimator Electrical engineering. Electronics. Nuclear engineering TK1-9971 |
spellingShingle |
Liu-type estimator iterative method L-curve ill-posed problem biased estimator least squares estimator Electrical engineering. Electronics. Nuclear engineering TK1-9971 Min Zhai Guolin Liu Qiuxiangtao Ke Wang Yang Chen Guangyong Pan Mingzhen Xin The Liu-Type Estimator Based on Parameter Optimization and its Application in SBAS Deformation Model Inversion |
description |
A situation in which an image is combined with multiple images to form interferometric pairs is often observed in small baseline subset-interferometric synthetic aperture radar (SBAS-InSAR) deformation inversion, and this situation leads to a near linear correlation between the column vectors of the model design matrix. The Liu-type estimator introduces the parameters <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula> into the normal equation to reduce the condition number of the design matrix and to improve the fitting properties. As the parameter <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> is mainly used to reduce ill-posed problems of the design matrix, the value of <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> is not limited. However, the value of <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>, as determined by existing methods, is usually too large or too small. Since the calculation of the mean square error involves true values, the parameter <inline-formula> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula> is often affected by errors in the estimation results, which leads to the decreased accuracy of Liu-type estimation results. To determine the optimal value of <inline-formula> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula>, an iterative Liu-type estimator is proposed to eliminate errors. Then, the <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>-curve optimization method and iterative Liu-type estimator are combined to achieve the optimal <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>. The reliability and accuracy of the methods are analyzed through SBAS-InSAR deformation experiments. The experimental results show that after using the <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>-curve method and an iterative operation to optimize <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula>, the accuracy of the Liu-type estimator based on parameter optimization is clearly improved compared with that of the ridge estimator and the Liu-type estimator. |
format |
article |
author |
Min Zhai Guolin Liu Qiuxiangtao Ke Wang Yang Chen Guangyong Pan Mingzhen Xin |
author_facet |
Min Zhai Guolin Liu Qiuxiangtao Ke Wang Yang Chen Guangyong Pan Mingzhen Xin |
author_sort |
Min Zhai |
title |
The Liu-Type Estimator Based on Parameter Optimization and its Application in SBAS Deformation Model Inversion |
title_short |
The Liu-Type Estimator Based on Parameter Optimization and its Application in SBAS Deformation Model Inversion |
title_full |
The Liu-Type Estimator Based on Parameter Optimization and its Application in SBAS Deformation Model Inversion |
title_fullStr |
The Liu-Type Estimator Based on Parameter Optimization and its Application in SBAS Deformation Model Inversion |
title_full_unstemmed |
The Liu-Type Estimator Based on Parameter Optimization and its Application in SBAS Deformation Model Inversion |
title_sort |
liu-type estimator based on parameter optimization and its application in sbas deformation model inversion |
publisher |
IEEE |
publishDate |
2021 |
url |
https://doaj.org/article/278f96854c3943cd9a3b7f14ab31d04e |
work_keys_str_mv |
AT minzhai theliutypeestimatorbasedonparameteroptimizationanditsapplicationinsbasdeformationmodelinversion AT guolinliu theliutypeestimatorbasedonparameteroptimizationanditsapplicationinsbasdeformationmodelinversion AT qiuxiangtao theliutypeestimatorbasedonparameteroptimizationanditsapplicationinsbasdeformationmodelinversion AT kewang theliutypeestimatorbasedonparameteroptimizationanditsapplicationinsbasdeformationmodelinversion AT yangchen theliutypeestimatorbasedonparameteroptimizationanditsapplicationinsbasdeformationmodelinversion AT guangyongpan theliutypeestimatorbasedonparameteroptimizationanditsapplicationinsbasdeformationmodelinversion AT mingzhenxin theliutypeestimatorbasedonparameteroptimizationanditsapplicationinsbasdeformationmodelinversion AT minzhai liutypeestimatorbasedonparameteroptimizationanditsapplicationinsbasdeformationmodelinversion AT guolinliu liutypeestimatorbasedonparameteroptimizationanditsapplicationinsbasdeformationmodelinversion AT qiuxiangtao liutypeestimatorbasedonparameteroptimizationanditsapplicationinsbasdeformationmodelinversion AT kewang liutypeestimatorbasedonparameteroptimizationanditsapplicationinsbasdeformationmodelinversion AT yangchen liutypeestimatorbasedonparameteroptimizationanditsapplicationinsbasdeformationmodelinversion AT guangyongpan liutypeestimatorbasedonparameteroptimizationanditsapplicationinsbasdeformationmodelinversion AT mingzhenxin liutypeestimatorbasedonparameteroptimizationanditsapplicationinsbasdeformationmodelinversion |
_version_ |
1718420658050826240 |