Effects of vibrotactile-enhanced music-based intervention on sensorimotor control capacity in the hand of an aging brain: a pilot feasibility randomized crossover trial
Abstract Background Music-based interventions (MBI), using music as a therapeutic medium, has been utilized as a promising strategy for motor relearning and shaping. However, currently, MBI with active performance training is restricted to being extensively applied for patients with various levels o...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/27bb7a6157084163977ac20579ce6c5a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Background Music-based interventions (MBI), using music as a therapeutic medium, has been utilized as a promising strategy for motor relearning and shaping. However, currently, MBI with active performance training is restricted to being extensively applied for patients with various levels of defects in fine motor skills and cognitive functions. Therefore, the integration of vibrotactile stimulation with MBI has been adopted as a motor training strategy intended to enhance motor learning through use of vibration stimuli. The current study was designed to investigate differences in the sensorimotor performance of older adults’ hands under baseline, a single session of active MBI, and vibrotactile-enriched MBI conditions. Methods Thirty healthy older adults were recruited and randomized to receive either the single session of 30-min of vibrotactile-enriched MBI or 30-min of active MBI at the beginning of the experiment. After a one-week washout period, they switched their treatment programs and then were assessed to study the training effects of both approaches through measuring precision pinch performance, hand function, and sensory status. Results The results of the Pinch-Holding-Up Activity test revealed a statistically significant difference in the FRpeak parameter (F = 14.37, p < 0.001, η2 p = 0.507) under the vibrotactile-enriched MBI condition compared to the baseline and active MBI conditions. In addition, significant beneficial effects were found on the results of the barognosis (F = 19.126, p < 0.001, η2 p = 0. 577) and roughness differentiation subtests (F = 15.036, p < 0.001, η2 p = 0.518) in the Manual Tactile Test for the participants in the vibrotactile-enriched MBI group. In addition, the participants under both the active MBI and vibrotactile-enriched MBI conditions exhibited better performance in the three subtests of the Purdue Pegboard Test as compared to under the baseline condition (p < 0.016). Conclusions The findings indicated that vibrotactile-enriched MBI potentially improves the precision pinch performance of hands in healthy older adults. In addition, the add-on effect of vibrotactile stimulation to the MBI condition provides beneficial effects on the sensory functions of the upper extremities. Trial registration NCT04802564 . Date of registration: 15/03/2021. The first posted date: 17/03/2021. |
---|