Comparison of multi-source satellite images for classifying marsh vegetation using DeepLabV3 Plus deep learning algorithm
The accurate classification of wetland vegetation is essential for rapid assessment and management. The Honghe National Nature Reserve (HNNR), located in Northeast China, was studied. The multi-scale remote sensing data of a new generation of Chinese high-spatial-resolution earth observation satelli...
Guardado en:
Autores principales: | Man Liu, Bolin Fu, Shuyu Xie, Hongchang He, Feiwu Lan, Yuyang Li, Peiqing Lou, Donglin Fan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/27c6acbe6bdc4d818ec690e6da3590cd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Segmentation of Overlapping Grape Clusters Based on the Depth Region Growing Method
por: Yun Peng, et al.
Publicado: (2021) -
Synergy of multi-temporal polarimetric SAR and optical image satellite for mapping of marsh vegetation using object-based random forest algorithm
por: Bolin Fu, et al.
Publicado: (2021) -
Fire effects on a Spartina densiflora salt marsh in the floodplain of the Paraná River, Argentina
por: MADANES,NORA, et al.
Publicado: (2007) -
Marsh persistence under sea-level rise is controlled by multiple, geologically variable stressors
por: M. Mitchell, et al.
Publicado: (2017) -
Estimating Ground Elevation and Vegetation Characteristics in Coastal Salt Marshes Using UAV-Based LiDAR and Digital Aerial Photogrammetry
por: Daniele Pinton, et al.
Publicado: (2021)