Range expansion and population dynamics of an invasive species: the Eurasian Collared-Dove (Streptopelia decaocto).

Invasive species offer ecologists the opportunity to study the factors governing species distributions and population growth. The Eurasian Collared-Dove (Streptopelia decaocto) serves as a model organism for invasive spread because of the wealth of abundance records and the recent development of the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Spencer N Scheidt, Allen H Hurlbert
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/27c7683b637f4b1d865eaf7ba0407340
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Invasive species offer ecologists the opportunity to study the factors governing species distributions and population growth. The Eurasian Collared-Dove (Streptopelia decaocto) serves as a model organism for invasive spread because of the wealth of abundance records and the recent development of the invasion. We tested whether a set of environmental variables were related to the carrying capacities and growth rates of individual populations by modeling the growth trajectories of individual populations of the Collared-Dove using Breeding Bird Survey (BBS) and Christmas Bird Count (CBC) data. Depending on the fit of our growth models, carrying capacity and growth rate parameters were extracted and modeled using historical, geographical, land cover and climatic predictors. Model averaging and individual variable importance weights were used to assess the strength of these predictors. The specific variables with the greatest support in our models differed between data sets, which may be the result of temporal and spatial differences between the BBS and CBC. However, our results indicate that both carrying capacity and population growth rates are related to developed land cover and temperature, while growth rates may also be influenced by dispersal patterns along the invasion front. Model averaged multivariate models explained 35-48% and 41-46% of the variation in carrying capacities and population growth rates, respectively. Our results suggest that widespread species invasions can be evaluated within a predictable population ecology framework. Land cover and climate both have important effects on population growth rates and carrying capacities of Collared-Dove populations. Efforts to model aspects of population growth of this invasive species were more successful than attempts to model static abundance patterns, pointing to a potentially fruitful avenue for the development of improved invasive distribution models.