A Context-Aware Neural Embedding for Function-Level Vulnerability Detection
Exploitable vulnerabilities in software systems are major security concerns. To date, machine learning (ML) based solutions have been proposed to automate and accelerate the detection of vulnerabilities. Most ML techniques aim to isolate a unit of source code, be it a line or a function, as being vu...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/27cd83465d714f0ab5bfa399d1c9a74a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:27cd83465d714f0ab5bfa399d1c9a74a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:27cd83465d714f0ab5bfa399d1c9a74a2021-11-25T16:13:20ZA Context-Aware Neural Embedding for Function-Level Vulnerability Detection10.3390/a141103351999-4893https://doaj.org/article/27cd83465d714f0ab5bfa399d1c9a74a2021-11-01T00:00:00Zhttps://www.mdpi.com/1999-4893/14/11/335https://doaj.org/toc/1999-4893Exploitable vulnerabilities in software systems are major security concerns. To date, machine learning (ML) based solutions have been proposed to automate and accelerate the detection of vulnerabilities. Most ML techniques aim to isolate a unit of source code, be it a line or a function, as being vulnerable. We argue that a code segment is vulnerable if it exists in certain semantic contexts, such as the control flow and data flow; therefore, it is important for the detection to be context aware. In this paper, we evaluate the performance of mainstream word embedding techniques in the scenario of software vulnerability detection. Based on the evaluation, we propose a supervised framework leveraging pre-trained context-aware embeddings from language models (ELMo) to capture deep contextual representations, further summarized by a bidirectional long short-term memory (Bi-LSTM) layer for learning long-range code dependency. The framework takes directly a source code function as an input and produces corresponding function embeddings, which can be treated as feature sets for conventional ML classifiers. Experimental results showed that the proposed framework yielded the best performance in its downstream detection tasks. Using the feature representations generated by our framework, random forest and support vector machine outperformed four baseline systems on our data sets, demonstrating that the framework incorporated with ELMo can effectively capture the vulnerable data flow patterns and facilitate the vulnerability detection task.Hongwei WeiGuanjun LinLin LiHeming JiaMDPI AGarticlecode neural embeddingcontextual learningvulnerability detectionIndustrial engineering. Management engineeringT55.4-60.8Electronic computers. Computer scienceQA75.5-76.95ENAlgorithms, Vol 14, Iss 335, p 335 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
code neural embedding contextual learning vulnerability detection Industrial engineering. Management engineering T55.4-60.8 Electronic computers. Computer science QA75.5-76.95 |
spellingShingle |
code neural embedding contextual learning vulnerability detection Industrial engineering. Management engineering T55.4-60.8 Electronic computers. Computer science QA75.5-76.95 Hongwei Wei Guanjun Lin Lin Li Heming Jia A Context-Aware Neural Embedding for Function-Level Vulnerability Detection |
description |
Exploitable vulnerabilities in software systems are major security concerns. To date, machine learning (ML) based solutions have been proposed to automate and accelerate the detection of vulnerabilities. Most ML techniques aim to isolate a unit of source code, be it a line or a function, as being vulnerable. We argue that a code segment is vulnerable if it exists in certain semantic contexts, such as the control flow and data flow; therefore, it is important for the detection to be context aware. In this paper, we evaluate the performance of mainstream word embedding techniques in the scenario of software vulnerability detection. Based on the evaluation, we propose a supervised framework leveraging pre-trained context-aware embeddings from language models (ELMo) to capture deep contextual representations, further summarized by a bidirectional long short-term memory (Bi-LSTM) layer for learning long-range code dependency. The framework takes directly a source code function as an input and produces corresponding function embeddings, which can be treated as feature sets for conventional ML classifiers. Experimental results showed that the proposed framework yielded the best performance in its downstream detection tasks. Using the feature representations generated by our framework, random forest and support vector machine outperformed four baseline systems on our data sets, demonstrating that the framework incorporated with ELMo can effectively capture the vulnerable data flow patterns and facilitate the vulnerability detection task. |
format |
article |
author |
Hongwei Wei Guanjun Lin Lin Li Heming Jia |
author_facet |
Hongwei Wei Guanjun Lin Lin Li Heming Jia |
author_sort |
Hongwei Wei |
title |
A Context-Aware Neural Embedding for Function-Level Vulnerability Detection |
title_short |
A Context-Aware Neural Embedding for Function-Level Vulnerability Detection |
title_full |
A Context-Aware Neural Embedding for Function-Level Vulnerability Detection |
title_fullStr |
A Context-Aware Neural Embedding for Function-Level Vulnerability Detection |
title_full_unstemmed |
A Context-Aware Neural Embedding for Function-Level Vulnerability Detection |
title_sort |
context-aware neural embedding for function-level vulnerability detection |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/27cd83465d714f0ab5bfa399d1c9a74a |
work_keys_str_mv |
AT hongweiwei acontextawareneuralembeddingforfunctionlevelvulnerabilitydetection AT guanjunlin acontextawareneuralembeddingforfunctionlevelvulnerabilitydetection AT linli acontextawareneuralembeddingforfunctionlevelvulnerabilitydetection AT hemingjia acontextawareneuralembeddingforfunctionlevelvulnerabilitydetection AT hongweiwei contextawareneuralembeddingforfunctionlevelvulnerabilitydetection AT guanjunlin contextawareneuralembeddingforfunctionlevelvulnerabilitydetection AT linli contextawareneuralembeddingforfunctionlevelvulnerabilitydetection AT hemingjia contextawareneuralembeddingforfunctionlevelvulnerabilitydetection |
_version_ |
1718413245858971648 |