Stable Higgs bundles over positive principal elliptic fibrations

Let M be a compact complex manifold of dimension at least three and Π : M → X a positive principal elliptic fibration, where X is a compact Kähler orbifold. Fix a preferred Hermitian metric on M. In [14], the third author proved that every stable vector bundle on M is of the form L⊕ Π ⃰ B0, where B0...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Biswas Indranil, Mj Mahan, Verbitsky Misha
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2018
Materias:
Acceso en línea:https://doaj.org/article/27d3a56d803442eda9279c7216753c52
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:27d3a56d803442eda9279c7216753c52
record_format dspace
spelling oai:doaj.org-article:27d3a56d803442eda9279c7216753c522021-12-02T19:08:48ZStable Higgs bundles over positive principal elliptic fibrations2300-744310.1515/coma-2018-0012https://doaj.org/article/27d3a56d803442eda9279c7216753c522018-11-01T00:00:00Zhttps://doi.org/10.1515/coma-2018-0012https://doaj.org/toc/2300-7443Let M be a compact complex manifold of dimension at least three and Π : M → X a positive principal elliptic fibration, where X is a compact Kähler orbifold. Fix a preferred Hermitian metric on M. In [14], the third author proved that every stable vector bundle on M is of the form L⊕ Π ⃰ B0, where B0 is a stable vector bundle on X, and L is a holomorphic line bundle on M. Here we prove that every stable Higgs bundle on M is of the form (L ⊕ Π ⃰B0, Π ⃰ ɸX), where (B0, ɸX) is a stable Higgs bundle on X and L is a holomorphic line bundle on M.Biswas IndranilMj MahanVerbitsky MishaDe Gruyterarticleprincipal elliptic fibrationhiggs bundlepreferred metricyang-mills equationpositivityMathematicsQA1-939ENComplex Manifolds, Vol 5, Iss 1, Pp 195-201 (2018)
institution DOAJ
collection DOAJ
language EN
topic principal elliptic fibration
higgs bundle
preferred metric
yang-mills equation
positivity
Mathematics
QA1-939
spellingShingle principal elliptic fibration
higgs bundle
preferred metric
yang-mills equation
positivity
Mathematics
QA1-939
Biswas Indranil
Mj Mahan
Verbitsky Misha
Stable Higgs bundles over positive principal elliptic fibrations
description Let M be a compact complex manifold of dimension at least three and Π : M → X a positive principal elliptic fibration, where X is a compact Kähler orbifold. Fix a preferred Hermitian metric on M. In [14], the third author proved that every stable vector bundle on M is of the form L⊕ Π ⃰ B0, where B0 is a stable vector bundle on X, and L is a holomorphic line bundle on M. Here we prove that every stable Higgs bundle on M is of the form (L ⊕ Π ⃰B0, Π ⃰ ɸX), where (B0, ɸX) is a stable Higgs bundle on X and L is a holomorphic line bundle on M.
format article
author Biswas Indranil
Mj Mahan
Verbitsky Misha
author_facet Biswas Indranil
Mj Mahan
Verbitsky Misha
author_sort Biswas Indranil
title Stable Higgs bundles over positive principal elliptic fibrations
title_short Stable Higgs bundles over positive principal elliptic fibrations
title_full Stable Higgs bundles over positive principal elliptic fibrations
title_fullStr Stable Higgs bundles over positive principal elliptic fibrations
title_full_unstemmed Stable Higgs bundles over positive principal elliptic fibrations
title_sort stable higgs bundles over positive principal elliptic fibrations
publisher De Gruyter
publishDate 2018
url https://doaj.org/article/27d3a56d803442eda9279c7216753c52
work_keys_str_mv AT biswasindranil stablehiggsbundlesoverpositiveprincipalellipticfibrations
AT mjmahan stablehiggsbundlesoverpositiveprincipalellipticfibrations
AT verbitskymisha stablehiggsbundlesoverpositiveprincipalellipticfibrations
_version_ 1718377137222713344