Cross Tensor Approximation Methods for Compression and Dimensionality Reduction
Cross Tensor Approximation (CTA) is a generalization of Cross/skeleton matrix and CUR Matrix Approximation (CMA) and is a suitable tool for fast low-rank tensor approximation. It facilitates interpreting the underlying data tensors and decomposing/compressing tensors so that their structures, such a...
Guardado en:
Autores principales: | Salman Ahmadi-Asl, Cesar F. Caiafa, Andrzej Cichocki, Anh Huy Phan, Toshihisa Tanaka, Ivan Oseledets, Jun Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/27dcdaa27af141ec971b8decec419b56 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Robust ISAR Cross-Range Scaling via Two-Step Rotation Velocity Estimation
por: Bo-Hyun Ryu, et al.
Publicado: (2021) -
Research on adaptive clutter suppression for ground penetrating radar based on wavelet transform and K-SVD
por: Xueli WU, et al.
Publicado: (2021) -
Penyelesaian Sistem Persamaan Linier Fully Fuzzy Menggunakan Metode Dekomposisi Nilai Singular (SVD)
por: Corry Corazon Marzuki, et al.
Publicado: (2018) -
Approximate Noether Symmetries of Perturbed Lagrangians and Approximate Conservation Laws
por: Matteo Gorgone, et al.
Publicado: (2021) -
Graph-Based Logarithmic Low-Rank Tensor Decomposition for the Fusion of Remotely Sensed Images
por: Fei Ma, et al.
Publicado: (2021)