Phylogenetic analysis of the Neotropical Albitarsis Complex based on mitogenome data

Abstract Background Some of the most important malaria vectors in South America belong to the Albitarsis Complex (Culicidae; Anophelinae; Anopheles). Understanding the origin, nature, and geographical distribution of species diversity in this important complex has important implications for vector i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Brian P. Bourke, Silvia A. Justi, Laura Caicedo-Quiroga, David B. Pecor, Richard C. Wilkerson, Yvonne-Marie Linton
Formato: article
Lenguaje:EN
Publicado: BMC 2021
Materias:
Acceso en línea:https://doaj.org/article/27ef8d6c4ffd473f92365af935984530
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:27ef8d6c4ffd473f92365af935984530
record_format dspace
spelling oai:doaj.org-article:27ef8d6c4ffd473f92365af9359845302021-11-28T12:22:51ZPhylogenetic analysis of the Neotropical Albitarsis Complex based on mitogenome data10.1186/s13071-021-05090-w1756-3305https://doaj.org/article/27ef8d6c4ffd473f92365af9359845302021-11-01T00:00:00Zhttps://doi.org/10.1186/s13071-021-05090-whttps://doaj.org/toc/1756-3305Abstract Background Some of the most important malaria vectors in South America belong to the Albitarsis Complex (Culicidae; Anophelinae; Anopheles). Understanding the origin, nature, and geographical distribution of species diversity in this important complex has important implications for vector incrimination, control, and management, and for modelling future responses to climate change, deforestation, and human population expansion. This study attempts to further explore species diversity and evolutionary history in the Albitarsis Complex by undertaking a characterization and phylogenetic analysis of the mitogenome of all 10 putative taxa in the Albitarsis Complex. Methods Mitogenome assembly and annotation allowed for feature comparison among Albitarsis Complex and Anopheles species. Selection analysis was conducted across all 13 protein-coding genes. Maximum likelihood and Bayesian inference methods were used to construct gene and species trees, respectively. Bayesian methods were also used to jointly estimate species delimitation and species trees. Results Gene composition and order were conserved across species within the complex. Unique signatures of positive selection were detected in two species—Anopheles janconnae and An. albitarsis G—which may have played a role in the recent and rapid diversification of the complex. The COI gene phylogeny does not fully recover the mitogenome phylogeny, and a multispecies coalescent-based phylogeny shows that considerable uncertainty exists through much of the mitogenome species tree. The origin of divergence in the complex dates to the Pliocene/Pleistocene boundary, and divergence within the distinct northern South American clade is estimated at approximately 1 million years ago. Neither the phylogenetic trees nor the delimitation approach rejected the 10-species hypothesis, although the analyses could not exclude the possibility that four putative species with scant a priori support (An. albitarsis G, An. albitarsis H, An. albitarsis I, and An. albitarsis J), represent population-level, rather than species-level, splits. Conclusion The lack of resolution in much of the species tree and the limitations of the delimitation analysis warrant future studies on the complex using genome-wide data and the inclusion of additional specimens, particularly from two putative species, An. albitarsis I and An. albitarsis J. Graphical AbstractBrian P. BourkeSilvia A. JustiLaura Caicedo-QuirogaDavid B. PecorRichard C. WilkersonYvonne-Marie LintonBMCarticleMalariaMitogenomeMosquitoPhylogeneticsPlasmodiumVectorInfectious and parasitic diseasesRC109-216ENParasites & Vectors, Vol 14, Iss 1, Pp 1-18 (2021)
institution DOAJ
collection DOAJ
language EN
topic Malaria
Mitogenome
Mosquito
Phylogenetics
Plasmodium
Vector
Infectious and parasitic diseases
RC109-216
spellingShingle Malaria
Mitogenome
Mosquito
Phylogenetics
Plasmodium
Vector
Infectious and parasitic diseases
RC109-216
Brian P. Bourke
Silvia A. Justi
Laura Caicedo-Quiroga
David B. Pecor
Richard C. Wilkerson
Yvonne-Marie Linton
Phylogenetic analysis of the Neotropical Albitarsis Complex based on mitogenome data
description Abstract Background Some of the most important malaria vectors in South America belong to the Albitarsis Complex (Culicidae; Anophelinae; Anopheles). Understanding the origin, nature, and geographical distribution of species diversity in this important complex has important implications for vector incrimination, control, and management, and for modelling future responses to climate change, deforestation, and human population expansion. This study attempts to further explore species diversity and evolutionary history in the Albitarsis Complex by undertaking a characterization and phylogenetic analysis of the mitogenome of all 10 putative taxa in the Albitarsis Complex. Methods Mitogenome assembly and annotation allowed for feature comparison among Albitarsis Complex and Anopheles species. Selection analysis was conducted across all 13 protein-coding genes. Maximum likelihood and Bayesian inference methods were used to construct gene and species trees, respectively. Bayesian methods were also used to jointly estimate species delimitation and species trees. Results Gene composition and order were conserved across species within the complex. Unique signatures of positive selection were detected in two species—Anopheles janconnae and An. albitarsis G—which may have played a role in the recent and rapid diversification of the complex. The COI gene phylogeny does not fully recover the mitogenome phylogeny, and a multispecies coalescent-based phylogeny shows that considerable uncertainty exists through much of the mitogenome species tree. The origin of divergence in the complex dates to the Pliocene/Pleistocene boundary, and divergence within the distinct northern South American clade is estimated at approximately 1 million years ago. Neither the phylogenetic trees nor the delimitation approach rejected the 10-species hypothesis, although the analyses could not exclude the possibility that four putative species with scant a priori support (An. albitarsis G, An. albitarsis H, An. albitarsis I, and An. albitarsis J), represent population-level, rather than species-level, splits. Conclusion The lack of resolution in much of the species tree and the limitations of the delimitation analysis warrant future studies on the complex using genome-wide data and the inclusion of additional specimens, particularly from two putative species, An. albitarsis I and An. albitarsis J. Graphical Abstract
format article
author Brian P. Bourke
Silvia A. Justi
Laura Caicedo-Quiroga
David B. Pecor
Richard C. Wilkerson
Yvonne-Marie Linton
author_facet Brian P. Bourke
Silvia A. Justi
Laura Caicedo-Quiroga
David B. Pecor
Richard C. Wilkerson
Yvonne-Marie Linton
author_sort Brian P. Bourke
title Phylogenetic analysis of the Neotropical Albitarsis Complex based on mitogenome data
title_short Phylogenetic analysis of the Neotropical Albitarsis Complex based on mitogenome data
title_full Phylogenetic analysis of the Neotropical Albitarsis Complex based on mitogenome data
title_fullStr Phylogenetic analysis of the Neotropical Albitarsis Complex based on mitogenome data
title_full_unstemmed Phylogenetic analysis of the Neotropical Albitarsis Complex based on mitogenome data
title_sort phylogenetic analysis of the neotropical albitarsis complex based on mitogenome data
publisher BMC
publishDate 2021
url https://doaj.org/article/27ef8d6c4ffd473f92365af935984530
work_keys_str_mv AT brianpbourke phylogeneticanalysisoftheneotropicalalbitarsiscomplexbasedonmitogenomedata
AT silviaajusti phylogeneticanalysisoftheneotropicalalbitarsiscomplexbasedonmitogenomedata
AT lauracaicedoquiroga phylogeneticanalysisoftheneotropicalalbitarsiscomplexbasedonmitogenomedata
AT davidbpecor phylogeneticanalysisoftheneotropicalalbitarsiscomplexbasedonmitogenomedata
AT richardcwilkerson phylogeneticanalysisoftheneotropicalalbitarsiscomplexbasedonmitogenomedata
AT yvonnemarielinton phylogeneticanalysisoftheneotropicalalbitarsiscomplexbasedonmitogenomedata
_version_ 1718408001365213184