Machine learning-based automated classification of headache disorders using patient-reported questionnaires
Abstract Classification of headache disorders is dependent on a subjective self-report from patients and its interpretation by physicians. We aimed to apply objective data-driven machine learning approaches to analyze patient-reported symptoms and test the feasibility of the automated classification...
Guardado en:
Autores principales: | Junmo Kwon, Hyebin Lee, Soohyun Cho, Chin-Sang Chung, Mi Ji Lee, Hyunjin Park |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/28034a0bd355481a8f29da270ff9906a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
RCVS–TCH score can predict reversible cerebral vasoconstriction syndrome in patients with thunderclap headache
por: Soohyun Cho, et al.
Publicado: (2021) -
The classification of chronic daily headache in French children and adolescents: A comparison between the second edition of the International Classification of Headache Disorders and Silberstein-Lipton criteria
por: Jean-Christophe Cuvellier, et al.
Publicado: (2008) -
The management and clinical knowledge of headache disorders among general practitioners in Norway: a questionnaire survey
por: Espen Saxhaug Kristoffersen, et al.
Publicado: (2021) -
Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans
por: Hwan-ho Cho, et al.
Publicado: (2021) -
An automated mammogram classification system using modified support vector machine
por: Kayode AA, et al.
Publicado: (2019)