so-metrizable spaces and images of metric spaces
so-metrizable spaces are a class of important generalized metric spaces between metric spaces and snsn-metrizable spaces where a space is called an so-metrizable space if it has a σ\sigma -locally finite so-network. As the further work that attaches to the celebrated Alexandrov conjecture, it is int...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/281749b77a9d47d2b6e882858500d31b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:281749b77a9d47d2b6e882858500d31b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:281749b77a9d47d2b6e882858500d31b2021-12-05T14:10:53Zso-metrizable spaces and images of metric spaces2391-545510.1515/math-2021-0082https://doaj.org/article/281749b77a9d47d2b6e882858500d31b2021-11-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0082https://doaj.org/toc/2391-5455so-metrizable spaces are a class of important generalized metric spaces between metric spaces and snsn-metrizable spaces where a space is called an so-metrizable space if it has a σ\sigma -locally finite so-network. As the further work that attaches to the celebrated Alexandrov conjecture, it is interesting to characterize so-metrizable spaces by images of metric spaces. This paper gives such characterizations for so-metrizable spaces. More precisely, this paper introduces so-open mappings and uses the “Pomomarev’s method” to prove that a space XX is an so-metrizable space if and only if it is an so-open, compact-covering, σ\sigma -image of a metric space, if and only if it is an so-open, σ\sigma -image of a metric space. In addition, it is shown that so-open mapping is a simplified form of snsn-open mapping (resp. 2-sequence-covering mapping if the domain is metrizable). Results of this paper give some new characterizations of so-metrizable spaces and establish some equivalent relations among so-open mapping, snsn-open mapping and 2-sequence-covering mapping, which further enrich and deepen generalized metric space theory.Yang SonglinGe XunDe Gruyterarticleso-networkso-metrizable spaceso-open mappingcompact-covering mappingσ-mapping54e3554e4054e4554e50MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 1145-1152 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
so-network so-metrizable space so-open mapping compact-covering mapping σ-mapping 54e35 54e40 54e45 54e50 Mathematics QA1-939 |
spellingShingle |
so-network so-metrizable space so-open mapping compact-covering mapping σ-mapping 54e35 54e40 54e45 54e50 Mathematics QA1-939 Yang Songlin Ge Xun so-metrizable spaces and images of metric spaces |
description |
so-metrizable spaces are a class of important generalized metric spaces between metric spaces and snsn-metrizable spaces where a space is called an so-metrizable space if it has a σ\sigma -locally finite so-network. As the further work that attaches to the celebrated Alexandrov conjecture, it is interesting to characterize so-metrizable spaces by images of metric spaces. This paper gives such characterizations for so-metrizable spaces. More precisely, this paper introduces so-open mappings and uses the “Pomomarev’s method” to prove that a space XX is an so-metrizable space if and only if it is an so-open, compact-covering, σ\sigma -image of a metric space, if and only if it is an so-open, σ\sigma -image of a metric space. In addition, it is shown that so-open mapping is a simplified form of snsn-open mapping (resp. 2-sequence-covering mapping if the domain is metrizable). Results of this paper give some new characterizations of so-metrizable spaces and establish some equivalent relations among so-open mapping, snsn-open mapping and 2-sequence-covering mapping, which further enrich and deepen generalized metric space theory. |
format |
article |
author |
Yang Songlin Ge Xun |
author_facet |
Yang Songlin Ge Xun |
author_sort |
Yang Songlin |
title |
so-metrizable spaces and images of metric spaces |
title_short |
so-metrizable spaces and images of metric spaces |
title_full |
so-metrizable spaces and images of metric spaces |
title_fullStr |
so-metrizable spaces and images of metric spaces |
title_full_unstemmed |
so-metrizable spaces and images of metric spaces |
title_sort |
so-metrizable spaces and images of metric spaces |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/281749b77a9d47d2b6e882858500d31b |
work_keys_str_mv |
AT yangsonglin sometrizablespacesandimagesofmetricspaces AT gexun sometrizablespacesandimagesofmetricspaces |
_version_ |
1718371591584219136 |