so-metrizable spaces and images of metric spaces

so-metrizable spaces are a class of important generalized metric spaces between metric spaces and snsn-metrizable spaces where a space is called an so-metrizable space if it has a σ\sigma -locally finite so-network. As the further work that attaches to the celebrated Alexandrov conjecture, it is int...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yang Songlin, Ge Xun
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/281749b77a9d47d2b6e882858500d31b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:281749b77a9d47d2b6e882858500d31b
record_format dspace
spelling oai:doaj.org-article:281749b77a9d47d2b6e882858500d31b2021-12-05T14:10:53Zso-metrizable spaces and images of metric spaces2391-545510.1515/math-2021-0082https://doaj.org/article/281749b77a9d47d2b6e882858500d31b2021-11-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0082https://doaj.org/toc/2391-5455so-metrizable spaces are a class of important generalized metric spaces between metric spaces and snsn-metrizable spaces where a space is called an so-metrizable space if it has a σ\sigma -locally finite so-network. As the further work that attaches to the celebrated Alexandrov conjecture, it is interesting to characterize so-metrizable spaces by images of metric spaces. This paper gives such characterizations for so-metrizable spaces. More precisely, this paper introduces so-open mappings and uses the “Pomomarev’s method” to prove that a space XX is an so-metrizable space if and only if it is an so-open, compact-covering, σ\sigma -image of a metric space, if and only if it is an so-open, σ\sigma -image of a metric space. In addition, it is shown that so-open mapping is a simplified form of snsn-open mapping (resp. 2-sequence-covering mapping if the domain is metrizable). Results of this paper give some new characterizations of so-metrizable spaces and establish some equivalent relations among so-open mapping, snsn-open mapping and 2-sequence-covering mapping, which further enrich and deepen generalized metric space theory.Yang SonglinGe XunDe Gruyterarticleso-networkso-metrizable spaceso-open mappingcompact-covering mappingσ-mapping54e3554e4054e4554e50MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 1145-1152 (2021)
institution DOAJ
collection DOAJ
language EN
topic so-network
so-metrizable space
so-open mapping
compact-covering mapping
σ-mapping
54e35
54e40
54e45
54e50
Mathematics
QA1-939
spellingShingle so-network
so-metrizable space
so-open mapping
compact-covering mapping
σ-mapping
54e35
54e40
54e45
54e50
Mathematics
QA1-939
Yang Songlin
Ge Xun
so-metrizable spaces and images of metric spaces
description so-metrizable spaces are a class of important generalized metric spaces between metric spaces and snsn-metrizable spaces where a space is called an so-metrizable space if it has a σ\sigma -locally finite so-network. As the further work that attaches to the celebrated Alexandrov conjecture, it is interesting to characterize so-metrizable spaces by images of metric spaces. This paper gives such characterizations for so-metrizable spaces. More precisely, this paper introduces so-open mappings and uses the “Pomomarev’s method” to prove that a space XX is an so-metrizable space if and only if it is an so-open, compact-covering, σ\sigma -image of a metric space, if and only if it is an so-open, σ\sigma -image of a metric space. In addition, it is shown that so-open mapping is a simplified form of snsn-open mapping (resp. 2-sequence-covering mapping if the domain is metrizable). Results of this paper give some new characterizations of so-metrizable spaces and establish some equivalent relations among so-open mapping, snsn-open mapping and 2-sequence-covering mapping, which further enrich and deepen generalized metric space theory.
format article
author Yang Songlin
Ge Xun
author_facet Yang Songlin
Ge Xun
author_sort Yang Songlin
title so-metrizable spaces and images of metric spaces
title_short so-metrizable spaces and images of metric spaces
title_full so-metrizable spaces and images of metric spaces
title_fullStr so-metrizable spaces and images of metric spaces
title_full_unstemmed so-metrizable spaces and images of metric spaces
title_sort so-metrizable spaces and images of metric spaces
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/281749b77a9d47d2b6e882858500d31b
work_keys_str_mv AT yangsonglin sometrizablespacesandimagesofmetricspaces
AT gexun sometrizablespacesandimagesofmetricspaces
_version_ 1718371591584219136