Stability and electronic properties of two-dimensional metal–organic perovskites in Janus phase
Two-dimensional (2D) hybrid metal–organic perovskites have been widely studied due to their good stability and unique optoelectronic properties. By incorporating different ligands on opposite sides of the inorganic octahedron plane, we construct a novel 2D Janus perovskite (2D-JP) exhibiting structu...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIP Publishing LLC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/28387d624c4b43aa8311a21a3f917148 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:28387d624c4b43aa8311a21a3f917148 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:28387d624c4b43aa8311a21a3f9171482021-12-01T18:51:23ZStability and electronic properties of two-dimensional metal–organic perovskites in Janus phase2166-532X10.1063/5.0067656https://doaj.org/article/28387d624c4b43aa8311a21a3f9171482021-11-01T00:00:00Zhttp://dx.doi.org/10.1063/5.0067656https://doaj.org/toc/2166-532XTwo-dimensional (2D) hybrid metal–organic perovskites have been widely studied due to their good stability and unique optoelectronic properties. By incorporating different ligands on opposite sides of the inorganic octahedron plane, we construct a novel 2D Janus perovskite (2D-JP) exhibiting structural out-of-plane symmetry-breaking. Our first-principles calculations show that the proposed 2D-JPs have thermodynamic stability comparable to that of the corresponding non-Janus perovskites. By modifying the passivating ligands or the thickness of the perovskite phase, we show that the band gaps and the carriers’ effective masses of the 2D-JPs can be modulated up to 0.29 eV and 0.27me, respectively, compared to the non-Janus materials. Furthermore, the structural out-of-plane asymmetry of 2D-JPs leads to the asymmetrical distribution of electrostatic potential and band edge charge density, which facilitates the separation of electrons and holes. Furthermore, we explored the stability and the electronic structures of Ruddlesden–Popper layered Janus perovskites with two different stacking methods. Our results provide a new approach to regulate the electronic properties by constructing 2D-JPs for practical applications in electronic and optoelectronic devices.Guangren NaYawen LiBangyu XingYilin ZhangXin HeWissam A. SaidiLijun ZhangAIP Publishing LLCarticleBiotechnologyTP248.13-248.65PhysicsQC1-999ENAPL Materials, Vol 9, Iss 11, Pp 111105-111105-7 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biotechnology TP248.13-248.65 Physics QC1-999 |
spellingShingle |
Biotechnology TP248.13-248.65 Physics QC1-999 Guangren Na Yawen Li Bangyu Xing Yilin Zhang Xin He Wissam A. Saidi Lijun Zhang Stability and electronic properties of two-dimensional metal–organic perovskites in Janus phase |
description |
Two-dimensional (2D) hybrid metal–organic perovskites have been widely studied due to their good stability and unique optoelectronic properties. By incorporating different ligands on opposite sides of the inorganic octahedron plane, we construct a novel 2D Janus perovskite (2D-JP) exhibiting structural out-of-plane symmetry-breaking. Our first-principles calculations show that the proposed 2D-JPs have thermodynamic stability comparable to that of the corresponding non-Janus perovskites. By modifying the passivating ligands or the thickness of the perovskite phase, we show that the band gaps and the carriers’ effective masses of the 2D-JPs can be modulated up to 0.29 eV and 0.27me, respectively, compared to the non-Janus materials. Furthermore, the structural out-of-plane asymmetry of 2D-JPs leads to the asymmetrical distribution of electrostatic potential and band edge charge density, which facilitates the separation of electrons and holes. Furthermore, we explored the stability and the electronic structures of Ruddlesden–Popper layered Janus perovskites with two different stacking methods. Our results provide a new approach to regulate the electronic properties by constructing 2D-JPs for practical applications in electronic and optoelectronic devices. |
format |
article |
author |
Guangren Na Yawen Li Bangyu Xing Yilin Zhang Xin He Wissam A. Saidi Lijun Zhang |
author_facet |
Guangren Na Yawen Li Bangyu Xing Yilin Zhang Xin He Wissam A. Saidi Lijun Zhang |
author_sort |
Guangren Na |
title |
Stability and electronic properties of two-dimensional metal–organic perovskites in Janus phase |
title_short |
Stability and electronic properties of two-dimensional metal–organic perovskites in Janus phase |
title_full |
Stability and electronic properties of two-dimensional metal–organic perovskites in Janus phase |
title_fullStr |
Stability and electronic properties of two-dimensional metal–organic perovskites in Janus phase |
title_full_unstemmed |
Stability and electronic properties of two-dimensional metal–organic perovskites in Janus phase |
title_sort |
stability and electronic properties of two-dimensional metal–organic perovskites in janus phase |
publisher |
AIP Publishing LLC |
publishDate |
2021 |
url |
https://doaj.org/article/28387d624c4b43aa8311a21a3f917148 |
work_keys_str_mv |
AT guangrenna stabilityandelectronicpropertiesoftwodimensionalmetalorganicperovskitesinjanusphase AT yawenli stabilityandelectronicpropertiesoftwodimensionalmetalorganicperovskitesinjanusphase AT bangyuxing stabilityandelectronicpropertiesoftwodimensionalmetalorganicperovskitesinjanusphase AT yilinzhang stabilityandelectronicpropertiesoftwodimensionalmetalorganicperovskitesinjanusphase AT xinhe stabilityandelectronicpropertiesoftwodimensionalmetalorganicperovskitesinjanusphase AT wissamasaidi stabilityandelectronicpropertiesoftwodimensionalmetalorganicperovskitesinjanusphase AT lijunzhang stabilityandelectronicpropertiesoftwodimensionalmetalorganicperovskitesinjanusphase |
_version_ |
1718404680907751424 |