Massively Parallel Discovery of Loosely Moving Congestion Patterns from Trajectory Data
The efficient discovery of significant group patterns from large-scale spatiotemporal trajectory data is a primary challenge, particularly in the context of urban traffic management. Existing studies on group pattern discovery mainly focus on the spatial gathering and moving continuity of vehicles o...
Guardado en:
Autores principales: | Chunchun Hu, Si Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/28401e3f36bb43b5a88082f43e065361 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evaluation of computer methods for biomarker discovery on computational grids
por: Tonini,Gustavo, et al.
Publicado: (2013) -
Spatial modeling of forest fires in Mexico: an integration of two data sources
por: Zúñiga-Vásquez,José Manuel, et al.
Publicado: (2017) -
A Case of Pigmented Bowen Disease on the Finger Mimicking Melanoma Showing a Chaos Pattern on Dermoscopy
por: Ryoji Kurita, et al.
Publicado: (2020) -
A Multilevel Analysis of the Impact of Unit Tightness vs. Looseness Culture on Attitudes and Behaviors in the Workplace
por: Daniela Di Santo, et al.
Publicado: (2021) -
Discovering Craniofacial Patterns Using Multivariate Cephalometric Data for Treatment Decision Making in Orthodontics
por: Araya-Díaz,Pamela, et al.
Publicado: (2013)