Exploring optoelectronic properties and mechanisms of layered ferroelectric K4Nb6O17 nanocrystalline films and nanolaminas
Abstract Two-dimensional layered K4Nb6O17 (KN) was easily formed as a secondary phase caused by the volatilization of alkali metal ions, when preparing ferroelectric K x Na1−x NbO3 based ceramics and films. In this work, it was believed that KN film is with weak ferroelectricity and has a little eff...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2864e8c5519b4943b54f0af726ea2209 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Two-dimensional layered K4Nb6O17 (KN) was easily formed as a secondary phase caused by the volatilization of alkali metal ions, when preparing ferroelectric K x Na1−x NbO3 based ceramics and films. In this work, it was believed that KN film is with weak ferroelectricity and has a little effect on the ferroelectric properties of K x Na1−x NbO3 based films. Moreover, temperature dependent (77–500 K) dielectric functions of KN film have been firstly extracted by fitting ellipsometric spectra with the Adachi dielectric function model and a four-phase layered model. The high-frequency dielectric constant linearly increases and optical band gap slightly decreases with increasing the temperature. We also research its photoelectrochemical properties and its application in high-efficient light-induced H2 evolution. In addition, X-ray photoelectron spectroscopy, Raman scattering, temperature dependent transmittance and infrared reflectance spectra, and first-principles calculation were conjointly performed to further reveal the intrinsic optoelectronic features and relevant mechanisms of KN. |
---|