A deep learning approach to programmable RNA switches

RNA can be used as a programmable tool for detection of biological analytes. Here the authors use deep neural networks to predict toehold switch functionality in synthetic biology applications.

Guardado en:
Detalles Bibliográficos
Autores principales: Nicolaas M. Angenent-Mari, Alexander S. Garruss, Luis R. Soenksen, George Church, James J. Collins
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/286bc1fe8dc44d1d82f15d89d4596e2e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:286bc1fe8dc44d1d82f15d89d4596e2e
record_format dspace
spelling oai:doaj.org-article:286bc1fe8dc44d1d82f15d89d4596e2e2021-12-02T18:01:42ZA deep learning approach to programmable RNA switches10.1038/s41467-020-18677-12041-1723https://doaj.org/article/286bc1fe8dc44d1d82f15d89d4596e2e2020-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18677-1https://doaj.org/toc/2041-1723RNA can be used as a programmable tool for detection of biological analytes. Here the authors use deep neural networks to predict toehold switch functionality in synthetic biology applications.Nicolaas M. Angenent-MariAlexander S. GarrussLuis R. SoenksenGeorge ChurchJames J. CollinsNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-12 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Nicolaas M. Angenent-Mari
Alexander S. Garruss
Luis R. Soenksen
George Church
James J. Collins
A deep learning approach to programmable RNA switches
description RNA can be used as a programmable tool for detection of biological analytes. Here the authors use deep neural networks to predict toehold switch functionality in synthetic biology applications.
format article
author Nicolaas M. Angenent-Mari
Alexander S. Garruss
Luis R. Soenksen
George Church
James J. Collins
author_facet Nicolaas M. Angenent-Mari
Alexander S. Garruss
Luis R. Soenksen
George Church
James J. Collins
author_sort Nicolaas M. Angenent-Mari
title A deep learning approach to programmable RNA switches
title_short A deep learning approach to programmable RNA switches
title_full A deep learning approach to programmable RNA switches
title_fullStr A deep learning approach to programmable RNA switches
title_full_unstemmed A deep learning approach to programmable RNA switches
title_sort deep learning approach to programmable rna switches
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/286bc1fe8dc44d1d82f15d89d4596e2e
work_keys_str_mv AT nicolaasmangenentmari adeeplearningapproachtoprogrammablernaswitches
AT alexandersgarruss adeeplearningapproachtoprogrammablernaswitches
AT luisrsoenksen adeeplearningapproachtoprogrammablernaswitches
AT georgechurch adeeplearningapproachtoprogrammablernaswitches
AT jamesjcollins adeeplearningapproachtoprogrammablernaswitches
AT nicolaasmangenentmari deeplearningapproachtoprogrammablernaswitches
AT alexandersgarruss deeplearningapproachtoprogrammablernaswitches
AT luisrsoenksen deeplearningapproachtoprogrammablernaswitches
AT georgechurch deeplearningapproachtoprogrammablernaswitches
AT jamesjcollins deeplearningapproachtoprogrammablernaswitches
_version_ 1718378916943495168