Predicting synthesizability of crystalline materials via deep learning

Predicting the synthesizability of unknown crystals is important for accelerating materials discovery. Here, the synthesizability of crystals with any given composition and structure can be predicted by a deep learning model that maps crystals onto color-coded 3D images processed by convolutional ne...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ali Davariashtiyani, Zahra Kadkhodaie, Sara Kadkhodaei
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/286e3c14437f415882db24b057ccb59c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:286e3c14437f415882db24b057ccb59c
record_format dspace
spelling oai:doaj.org-article:286e3c14437f415882db24b057ccb59c2021-11-21T12:15:04ZPredicting synthesizability of crystalline materials via deep learning10.1038/s43246-021-00219-x2662-4443https://doaj.org/article/286e3c14437f415882db24b057ccb59c2021-11-01T00:00:00Zhttps://doi.org/10.1038/s43246-021-00219-xhttps://doaj.org/toc/2662-4443Predicting the synthesizability of unknown crystals is important for accelerating materials discovery. Here, the synthesizability of crystals with any given composition and structure can be predicted by a deep learning model that maps crystals onto color-coded 3D images processed by convolutional neural networks.Ali DavariashtiyaniZahra KadkhodaieSara KadkhodaeiNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492ENCommunications Materials, Vol 2, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Ali Davariashtiyani
Zahra Kadkhodaie
Sara Kadkhodaei
Predicting synthesizability of crystalline materials via deep learning
description Predicting the synthesizability of unknown crystals is important for accelerating materials discovery. Here, the synthesizability of crystals with any given composition and structure can be predicted by a deep learning model that maps crystals onto color-coded 3D images processed by convolutional neural networks.
format article
author Ali Davariashtiyani
Zahra Kadkhodaie
Sara Kadkhodaei
author_facet Ali Davariashtiyani
Zahra Kadkhodaie
Sara Kadkhodaei
author_sort Ali Davariashtiyani
title Predicting synthesizability of crystalline materials via deep learning
title_short Predicting synthesizability of crystalline materials via deep learning
title_full Predicting synthesizability of crystalline materials via deep learning
title_fullStr Predicting synthesizability of crystalline materials via deep learning
title_full_unstemmed Predicting synthesizability of crystalline materials via deep learning
title_sort predicting synthesizability of crystalline materials via deep learning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/286e3c14437f415882db24b057ccb59c
work_keys_str_mv AT alidavariashtiyani predictingsynthesizabilityofcrystallinematerialsviadeeplearning
AT zahrakadkhodaie predictingsynthesizabilityofcrystallinematerialsviadeeplearning
AT sarakadkhodaei predictingsynthesizabilityofcrystallinematerialsviadeeplearning
_version_ 1718419113480552448