Predicting synthesizability of crystalline materials via deep learning
Predicting the synthesizability of unknown crystals is important for accelerating materials discovery. Here, the synthesizability of crystals with any given composition and structure can be predicted by a deep learning model that maps crystals onto color-coded 3D images processed by convolutional ne...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/286e3c14437f415882db24b057ccb59c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:286e3c14437f415882db24b057ccb59c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:286e3c14437f415882db24b057ccb59c2021-11-21T12:15:04ZPredicting synthesizability of crystalline materials via deep learning10.1038/s43246-021-00219-x2662-4443https://doaj.org/article/286e3c14437f415882db24b057ccb59c2021-11-01T00:00:00Zhttps://doi.org/10.1038/s43246-021-00219-xhttps://doaj.org/toc/2662-4443Predicting the synthesizability of unknown crystals is important for accelerating materials discovery. Here, the synthesizability of crystals with any given composition and structure can be predicted by a deep learning model that maps crystals onto color-coded 3D images processed by convolutional neural networks.Ali DavariashtiyaniZahra KadkhodaieSara KadkhodaeiNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492ENCommunications Materials, Vol 2, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Materials of engineering and construction. Mechanics of materials TA401-492 |
spellingShingle |
Materials of engineering and construction. Mechanics of materials TA401-492 Ali Davariashtiyani Zahra Kadkhodaie Sara Kadkhodaei Predicting synthesizability of crystalline materials via deep learning |
description |
Predicting the synthesizability of unknown crystals is important for accelerating materials discovery. Here, the synthesizability of crystals with any given composition and structure can be predicted by a deep learning model that maps crystals onto color-coded 3D images processed by convolutional neural networks. |
format |
article |
author |
Ali Davariashtiyani Zahra Kadkhodaie Sara Kadkhodaei |
author_facet |
Ali Davariashtiyani Zahra Kadkhodaie Sara Kadkhodaei |
author_sort |
Ali Davariashtiyani |
title |
Predicting synthesizability of crystalline materials via deep learning |
title_short |
Predicting synthesizability of crystalline materials via deep learning |
title_full |
Predicting synthesizability of crystalline materials via deep learning |
title_fullStr |
Predicting synthesizability of crystalline materials via deep learning |
title_full_unstemmed |
Predicting synthesizability of crystalline materials via deep learning |
title_sort |
predicting synthesizability of crystalline materials via deep learning |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/286e3c14437f415882db24b057ccb59c |
work_keys_str_mv |
AT alidavariashtiyani predictingsynthesizabilityofcrystallinematerialsviadeeplearning AT zahrakadkhodaie predictingsynthesizabilityofcrystallinematerialsviadeeplearning AT sarakadkhodaei predictingsynthesizabilityofcrystallinematerialsviadeeplearning |
_version_ |
1718419113480552448 |