Predicting synthesizability of crystalline materials via deep learning
Predicting the synthesizability of unknown crystals is important for accelerating materials discovery. Here, the synthesizability of crystals with any given composition and structure can be predicted by a deep learning model that maps crystals onto color-coded 3D images processed by convolutional ne...
Enregistré dans:
Auteurs principaux: | Ali Davariashtiyani, Zahra Kadkhodaie, Sara Kadkhodaei |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/286e3c14437f415882db24b057ccb59c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
StressNet - Deep learning to predict stress with fracture propagation in brittle materials
par: Yinan Wang, et autres
Publié: (2021) -
Virtual experimentations by deep learning on tangible materials
par: Takashi Honda, et autres
Publié: (2021) -
Reducing crystallinity in solid polymer electrolytes for lithium-metal batteries via statistical copolymerization
par: Vincent St-Onge, et autres
Publié: (2021) -
High performance crystalline nanocellulose using an ancestral endoglucanase
par: Borja Alonso-Lerma, et autres
Publié: (2020) -
Controlled growth and ordering of poorly-crystalline calcium-silicate-hydrate nanosheets
par: Felipe Basquiroto de Souza, et autres
Publié: (2021)