Predicting synthesizability of crystalline materials via deep learning

Predicting the synthesizability of unknown crystals is important for accelerating materials discovery. Here, the synthesizability of crystals with any given composition and structure can be predicted by a deep learning model that maps crystals onto color-coded 3D images processed by convolutional ne...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ali Davariashtiyani, Zahra Kadkhodaie, Sara Kadkhodaei
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/286e3c14437f415882db24b057ccb59c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares