Predicting synthesizability of crystalline materials via deep learning
Predicting the synthesizability of unknown crystals is important for accelerating materials discovery. Here, the synthesizability of crystals with any given composition and structure can be predicted by a deep learning model that maps crystals onto color-coded 3D images processed by convolutional ne...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/286e3c14437f415882db24b057ccb59c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sea el primero en dejar un comentario!