Predicting synthesizability of crystalline materials via deep learning
Predicting the synthesizability of unknown crystals is important for accelerating materials discovery. Here, the synthesizability of crystals with any given composition and structure can be predicted by a deep learning model that maps crystals onto color-coded 3D images processed by convolutional ne...
Enregistré dans:
Auteurs principaux: | , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/286e3c14437f415882db24b057ccb59c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|