Impact of a tropical forest blowdown on aboveground carbon balance

Abstract Field measurements demonstrate a carbon sink in the Amazon and Congo basins, but the cause of this sink is uncertain. One possibility is that forest landscapes are experiencing transient recovery from previous disturbance. Attributing the carbon sink to transient recovery or other processes...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: K. C. Cushman, John T. Burley, Benedikt Imbach, Sassan S. Saatchi, Carlos E. Silva, Orlando Vargas, Carlo Zgraggen, James R. Kellner
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/28723270b61340e780f6f1bcd7d11454
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:28723270b61340e780f6f1bcd7d11454
record_format dspace
spelling oai:doaj.org-article:28723270b61340e780f6f1bcd7d114542021-12-02T15:49:40ZImpact of a tropical forest blowdown on aboveground carbon balance10.1038/s41598-021-90576-x2045-2322https://doaj.org/article/28723270b61340e780f6f1bcd7d114542021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-90576-xhttps://doaj.org/toc/2045-2322Abstract Field measurements demonstrate a carbon sink in the Amazon and Congo basins, but the cause of this sink is uncertain. One possibility is that forest landscapes are experiencing transient recovery from previous disturbance. Attributing the carbon sink to transient recovery or other processes is challenging because we do not understand the sensitivity of conventional remote sensing methods to changes in aboveground carbon density (ACD) caused by disturbance events. Here we use ultra-high-density drone lidar to quantify the impact of a blowdown disturbance on ACD in a lowland rain forest in Costa Rica. We show that the blowdown decreased ACD by at least 17.6%, increased the number of canopy gaps, and altered the gap size-frequency distribution. Analyses of a canopy-height transition matrix indicate departure from steady-state conditions. This event will initiate a transient sink requiring an estimated 24–49 years to recover pre-disturbance ACD. Our results suggest that blowdowns of this magnitude and extent can remain undetected by conventional satellite optical imagery but are likely to alter ACD decades after they occur.K. C. CushmanJohn T. BurleyBenedikt ImbachSassan S. SaatchiCarlos E. SilvaOrlando VargasCarlo ZgraggenJames R. KellnerNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
K. C. Cushman
John T. Burley
Benedikt Imbach
Sassan S. Saatchi
Carlos E. Silva
Orlando Vargas
Carlo Zgraggen
James R. Kellner
Impact of a tropical forest blowdown on aboveground carbon balance
description Abstract Field measurements demonstrate a carbon sink in the Amazon and Congo basins, but the cause of this sink is uncertain. One possibility is that forest landscapes are experiencing transient recovery from previous disturbance. Attributing the carbon sink to transient recovery or other processes is challenging because we do not understand the sensitivity of conventional remote sensing methods to changes in aboveground carbon density (ACD) caused by disturbance events. Here we use ultra-high-density drone lidar to quantify the impact of a blowdown disturbance on ACD in a lowland rain forest in Costa Rica. We show that the blowdown decreased ACD by at least 17.6%, increased the number of canopy gaps, and altered the gap size-frequency distribution. Analyses of a canopy-height transition matrix indicate departure from steady-state conditions. This event will initiate a transient sink requiring an estimated 24–49 years to recover pre-disturbance ACD. Our results suggest that blowdowns of this magnitude and extent can remain undetected by conventional satellite optical imagery but are likely to alter ACD decades after they occur.
format article
author K. C. Cushman
John T. Burley
Benedikt Imbach
Sassan S. Saatchi
Carlos E. Silva
Orlando Vargas
Carlo Zgraggen
James R. Kellner
author_facet K. C. Cushman
John T. Burley
Benedikt Imbach
Sassan S. Saatchi
Carlos E. Silva
Orlando Vargas
Carlo Zgraggen
James R. Kellner
author_sort K. C. Cushman
title Impact of a tropical forest blowdown on aboveground carbon balance
title_short Impact of a tropical forest blowdown on aboveground carbon balance
title_full Impact of a tropical forest blowdown on aboveground carbon balance
title_fullStr Impact of a tropical forest blowdown on aboveground carbon balance
title_full_unstemmed Impact of a tropical forest blowdown on aboveground carbon balance
title_sort impact of a tropical forest blowdown on aboveground carbon balance
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/28723270b61340e780f6f1bcd7d11454
work_keys_str_mv AT kccushman impactofatropicalforestblowdownonabovegroundcarbonbalance
AT johntburley impactofatropicalforestblowdownonabovegroundcarbonbalance
AT benediktimbach impactofatropicalforestblowdownonabovegroundcarbonbalance
AT sassanssaatchi impactofatropicalforestblowdownonabovegroundcarbonbalance
AT carlosesilva impactofatropicalforestblowdownonabovegroundcarbonbalance
AT orlandovargas impactofatropicalforestblowdownonabovegroundcarbonbalance
AT carlozgraggen impactofatropicalforestblowdownonabovegroundcarbonbalance
AT jamesrkellner impactofatropicalforestblowdownonabovegroundcarbonbalance
_version_ 1718385679797321728