MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
Our understanding of human disease can be improved by integrating the abundance of high throughput biomedical data. Here, the authors use deep learning methods successfully used on images to integrate various types of omics data to improve patient classification and identify disease biomarkers.
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/288469ae1b8548578e585c76f18caf41 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Our understanding of human disease can be improved by integrating the abundance of high throughput biomedical data. Here, the authors use deep learning methods successfully used on images to integrate various types of omics data to improve patient classification and identify disease biomarkers. |
---|