MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
Our understanding of human disease can be improved by integrating the abundance of high throughput biomedical data. Here, the authors use deep learning methods successfully used on images to integrate various types of omics data to improve patient classification and identify disease biomarkers.
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/288469ae1b8548578e585c76f18caf41 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:288469ae1b8548578e585c76f18caf41 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:288469ae1b8548578e585c76f18caf412021-12-02T17:34:29ZMOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification10.1038/s41467-021-23774-w2041-1723https://doaj.org/article/288469ae1b8548578e585c76f18caf412021-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23774-whttps://doaj.org/toc/2041-1723Our understanding of human disease can be improved by integrating the abundance of high throughput biomedical data. Here, the authors use deep learning methods successfully used on images to integrate various types of omics data to improve patient classification and identify disease biomarkers.Tongxin WangWei ShaoZhi HuangHaixu TangJie ZhangZhengming DingKun HuangNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Tongxin Wang Wei Shao Zhi Huang Haixu Tang Jie Zhang Zhengming Ding Kun Huang MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification |
description |
Our understanding of human disease can be improved by integrating the abundance of high throughput biomedical data. Here, the authors use deep learning methods successfully used on images to integrate various types of omics data to improve patient classification and identify disease biomarkers. |
format |
article |
author |
Tongxin Wang Wei Shao Zhi Huang Haixu Tang Jie Zhang Zhengming Ding Kun Huang |
author_facet |
Tongxin Wang Wei Shao Zhi Huang Haixu Tang Jie Zhang Zhengming Ding Kun Huang |
author_sort |
Tongxin Wang |
title |
MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification |
title_short |
MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification |
title_full |
MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification |
title_fullStr |
MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification |
title_full_unstemmed |
MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification |
title_sort |
mogonet integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/288469ae1b8548578e585c76f18caf41 |
work_keys_str_mv |
AT tongxinwang mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification AT weishao mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification AT zhihuang mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification AT haixutang mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification AT jiezhang mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification AT zhengmingding mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification AT kunhuang mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification |
_version_ |
1718379930774929408 |