MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification

Our understanding of human disease can be improved by integrating the abundance of high throughput biomedical data. Here, the authors use deep learning methods successfully used on images to integrate various types of omics data to improve patient classification and identify disease biomarkers.

Guardado en:
Detalles Bibliográficos
Autores principales: Tongxin Wang, Wei Shao, Zhi Huang, Haixu Tang, Jie Zhang, Zhengming Ding, Kun Huang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/288469ae1b8548578e585c76f18caf41
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:288469ae1b8548578e585c76f18caf41
record_format dspace
spelling oai:doaj.org-article:288469ae1b8548578e585c76f18caf412021-12-02T17:34:29ZMOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification10.1038/s41467-021-23774-w2041-1723https://doaj.org/article/288469ae1b8548578e585c76f18caf412021-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23774-whttps://doaj.org/toc/2041-1723Our understanding of human disease can be improved by integrating the abundance of high throughput biomedical data. Here, the authors use deep learning methods successfully used on images to integrate various types of omics data to improve patient classification and identify disease biomarkers.Tongxin WangWei ShaoZhi HuangHaixu TangJie ZhangZhengming DingKun HuangNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Tongxin Wang
Wei Shao
Zhi Huang
Haixu Tang
Jie Zhang
Zhengming Ding
Kun Huang
MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
description Our understanding of human disease can be improved by integrating the abundance of high throughput biomedical data. Here, the authors use deep learning methods successfully used on images to integrate various types of omics data to improve patient classification and identify disease biomarkers.
format article
author Tongxin Wang
Wei Shao
Zhi Huang
Haixu Tang
Jie Zhang
Zhengming Ding
Kun Huang
author_facet Tongxin Wang
Wei Shao
Zhi Huang
Haixu Tang
Jie Zhang
Zhengming Ding
Kun Huang
author_sort Tongxin Wang
title MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
title_short MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
title_full MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
title_fullStr MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
title_full_unstemmed MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
title_sort mogonet integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/288469ae1b8548578e585c76f18caf41
work_keys_str_mv AT tongxinwang mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification
AT weishao mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification
AT zhihuang mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification
AT haixutang mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification
AT jiezhang mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification
AT zhengmingding mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification
AT kunhuang mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification
_version_ 1718379930774929408